중국제조 2025 추진성과와 시사점

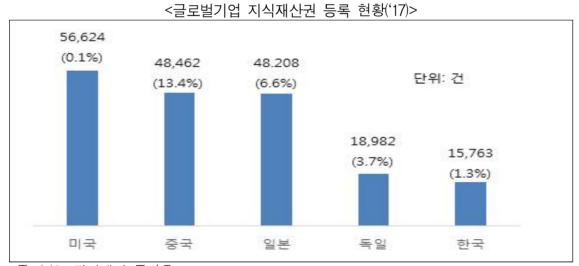
2019. 1. 14(월)

국 제 무 역 연 구 원 전략시장연구실/신성장연구실

CONTENTS

[요약]	i
Ⅰ. 연구배경 및 목적	01
Ⅱ. 중국제조 2025 주요 내용	04
Ⅲ. 중국제조 2025 추진 성과	13
Ⅳ. 10대 중점산업 추진 현황	17
∨. 주요 중점산업 추진 성과	43
VI. 중국제조 2025와 미·중 무역분쟁	56
Ⅷ. 향후 전망 및 대응 방안	61

연구배경 및 목적


- 미·중 무역분쟁이 관세분쟁에서 미래 기술패권 전쟁으로 확대되면서 시진핑 주석이 강력하게 추진하고 있는 **중국제조 2025에 대한 관심 증대**
- 중국제조 2025는 제조업의 자급률 제고를 통한 수입대체화를 추진하므로 대중 국 수출의존도가 높은 한국 등 기존 제조국가들에게 위협요인으로 작용
 - * 독일의 싱크탱크인 MERICS는 제조업 의존도와 첨단산업 중요성 등을 기준으 로 한국이 중국제조 2025로 인해 가장 피해가 클 것이라고 분석
- 따라서 중국제조 2025의 주요내용을 살펴보고 10대 산업 추진성과 분석을 통해 우리 기업의 대응 방안 모색 필요성 증대

중국제조 2025 주요 내용

- 중국제조 2025는 중국이 제조강국으로 나아가기위한 **30년 장기 혁신 계획**
- 제조업 활성화와 제조강국 건설을 위하여 향후 30년간 3단계 제조업 혁신을 통해 세계 제조업 선도국가 지위 확립하는 것이 목표
- 중국제조 2025는 제조강국 실현을 위한 30년의 장기 비전 중 첫 번째 단계
- 10대 핵심산업 23개 분야를 미래 전략산업으로 육성하여 제조업 경쟁력 강화와 산업고도화를 통해 IT기반 첨단산업 중심의 제조강국으로 전환을 목표
 - * 10대 핵심산업: 차세대정보기술, 고급 공작기계 및 로봇, 항공우주 설비, 해양 엔지니어 설비 및 첨단 선박, 선진 궤도교통 설비, 에너지절감 및 신에너지 자 동차, 전력 설비, 농업 기계 설비, 신소재, 바이오 및 고급 의료기기
- 10대 핵심산업의 핵심기술 부품 및 기초소재 국산화율을 2020년까지 40%. 2025년까지 70% 제고

||| 중국제조 2025 추진 성과

- (정책적 성과)제조업 혁신센터 건설, 시범도시 건설 등 추진 인프라 구축과 지역별 특성에 맞는 추진 계획 수립 등 정책적 성과가 나타나기 시작
- 제조업 혁신센터 건설 등 5대 중점프로젝트 추진 성과뿐만 아니라 각 지역의 특색에 맞는 추진 전략 수립 등 가시적 정책적 성과 도출
 - 5개 국가급 제조업 혁신센터와 48개 성급 제조업 혁신센터 건설, 226개 스마트 제조 종합 표준화 실험·검증·신모델 응용 프로젝트 시행, 109개 스마트 제조 시범 프로젝트 선정 등
- (기술・혁신 성과)연구개발(R&D)투자 세계 2위, 지적재산권 등록 세계 2위, 과학논문 발표 수 세계 1위 등 중국의 기술 혁신 능력 빠르게 향상
- 미국 과학위원회는 조만간 중국의 R&D투자가 미국을 추월할 것으로 전망
 - 중국의 전년 대비 연구개발(R&D)투자 증가율은 9.8%로 미국(1.6%), 독일(2.5%), 일본(-3.3%), 한국(3.2%) 등 경쟁국들을 크게 압도
- 2017년 중국 기업의 지적재산권 등록건수는 48,462건으로 미국(56,624건)에 이어 세계 2위를 기록

주: ()는 전년대비 증가율

자료: WIPO

□Ⅴ 주요 중점산업 추진 성과

- 차세대 첨단산업 분야에서 가시적 성과를 내면서 항아리(腰鼓) 형태로 발전
- 5G, 고속철도, 전력장비(태양광 포함) 등 3개 산업분야에서 기술혁신을 선도
- 반면, **반도체, 민간항공장비는** 대규모 투자에도 불구하고 세계 수준과 여전히 격차가 존재하여 2025년에도 수요의 50% 이상을 수입에 의존할 것으로 전망
- 그 밖에 로봇, 선박, 정밀제어장치 등 분야에서는 계획에 따라 순조롭게 추진 중

1. 전기차

- 정부의 **적극적 지원**과 글로벌 업체와의 **합작** 등으로 **전기차 시장을 주도**
- 2017년 글로벌 시장에서 순수 전기차와 플러그인 하이브리드차, 수소전기차를 합친 친환경차 판매량 1위는 109,485대를 판매한 중국의 비야디(BYD)임
- 전기차 배터리 출하량에서도 자국 전기차 시장을 발판으로 세계 1위로 등극
- 2017년 1~5월 CATL의 출하량은 1위인 파나소닉의 1/4 수준이었으나 1년만에 출하량이 4배 이상 늘면서 파나소닉을 제치고 1위로 등극

2. 5세대 이동통신(5G)

- 4G(4세대 통신) 서비스에서는 뒤쳐졌던 중국이 5G 경쟁에서는 선두권 유지
- 미국무선통신산업협회(CTIA)는 중국이 5G 준비과정에서 가장 앞서나가고 있으며 통신장비뿐만 아니라 원천기술도 대거 육성하고 있다고 평가('18.4)
- 정부의 적극적 지원과 통신 3사와 화웨이, 중성(ZTE) 등 통신업체가 5G 개발과 상용화를 주도하고 있고, 2019년 5G 시범상용화, 2020년 대규모 상용화를 목표
- 화웨이는 2018년 12월 인텔과 공동으로 세계 최초 SA 기반으로 한 5G NR 상호운영성 및 개발 테스트를 성공
- 통신장비 시장에서도 **중국정부의 강력한 지원과 기업의 연구개발 투자**로 높은 품질과 가성비를 앞세운 **화웨이가 2017년 에릭슨을 제치고 세계 1위로 부상**

3. 고속철도

- 중국은 선진 외국 기술을 받아들이고(引進) 소화해서(消化) 중국식으로 다시 혁신하면서(再創新) 고속철 원조인 **프랑스, 일본 등과 세계 시장서 경쟁**
- 중국은 2004년 자국 고속철 시장을 개방하면서 알스톰, 지멘스, 봄바디어, 가와 사키중공업 등 외국 기업들과 합작을 통해 선진기술을 인수
- 선진기술을 받아들이고 재혁신 하면서 중국 고속철 시장에서 중국 업체의 점유 율은 2004년 30% 미만에서 현재 80%까지 확대
- 중국은 시속 350km의 고속철 무인운전 시스템을 개발하였으며 2020년까지 시속 600km 자기부상열차를 개발할 계획

4. 초고압직류전송(High Voltage Direct Current; HVDC)

- 전세계 HVDC시장의 80%를 차지하며 글로벌 강국으로 부상
- 중국은 1990년대 초 지멘스, ABB등으로부터 기술을 넘겨받아 국산화를 추진
- 현재 500kV, 800kV는 완벽히 상용화를 마쳤으며 1,100kV 기술을 개발 중
 - * 한국은 당진화력발전소에서 만들어진 전력을 안정적으로 수도권에 공급하기 위해 500kV 북당진-고덕가 HVDC 건설 중
- 29개의 HVDC프로젝트를 운영 중에 있으며, 7개 프로젝트를 건설 중
- 2010년 7월, 세계 최초로 샹지아바-상하이 2,071km 구간에 ± 800kV HVDC를 적용하는데 성공하였으며 준동발전소와 쓰촨성을 연결하는 HVDC사업 추진

5. 산업용 로봇

- 세계 최대 산업용 로봇 시장으로 부상하였으나 중국 브랜드 비중은 1/4에 불과
- 중국의 산업용 로봇시장 규모는 2013년 이후 연평균 29.7% 성장하면서 세계 최대의 산업용 로봇 시장으로 부상(전 세계 판매의 36.2% 차지)

- 과감한 M&A로 기술경쟁력 강화하면서 빠르게 선두업체들을 추격
- 스쿠터 제조 스타트업인 나인봇이 2015년 세그웨이를 인수하였으며 가전기업 인 메이디는 2016년 세계 3대 로봇 업체인 독일의 쿠카(KUKA)를 인수
- 여전히 일본, 독일 등 **기술 선진국과의 기술격차가 크게 존재**하나 향후 중국 브랜드의 판매가 증가하면서 기술과 품질의 안정성도 증가할 것으로 전망

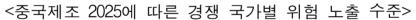
6. 반도체

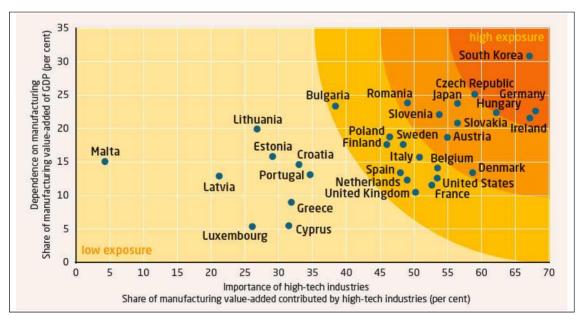
- 중국이 **'반도체굴기'**를 외치며 대규모 투자계획을 발표
- 중국정부는 2014년에 218억 달러 규모의 반도체 펀드를 조성해 **2017년까지** 70개 프로젝트에 투자
- 중국기업들도 반도체 투자에 합세하여 현재 약 1조 위안 투자한 것으로 추정
- 시진핑 주석이 2018년 4월 '반도체 심장론'을 제시한 이후 대규모 펀드 조성 과 연구개발(R&D) 투자 계획 등이 발표
- 국가 집적회로사업 투자펀드는 3,000억위안(약 51조원) 규모의 반도체 산업 육성 펀드를 조성
- 대규모 투자에도 불구하고 낙후된 공정, 높은 원가, 부족한 인력 등으로 반도체 Big3(삼성, SK, 마이크론)와 여전히 3~5년 정도의 기술격차 존재
- 중국정부의 대규모 투자에도 불구하고 세계 반도체 매출 상위 10위권에 진입 한 중국 반도체 기업은 전무
- 2017년 기준, 전 세계 반도체 매출 1위 기업은 삼성전자(14.2%)이며 그 뒤로 인텔(14.0%), SK하이닉스(6.3%), 마이크론(5.4%), 퀠컴(3.8%) 순
- 미국의 견제로 중국의 반도체 기술습득 시간은 다소 지연될 것으로 예상
- 중국은 M&A를 통해 선진기술을 습득하여 기술격차를 줄이려고 하나 미국 등 서방국가들의 견제로 인수가 좌절

∨ 향후 전망

- 중국은 무역분쟁 해소를 위해 「**중국제조 2025」전략을 수정**할 전망
- 그러나, 중국제조 2025는 단순한 산업고도화 전략이 아닌 중국몽(中國夢)의핵심 추동력으로 목표달성을 위해 수정・보완되면서 지속 추진될 전망
- 다만, 중국정부의 목표 연기와 미국 등 서방국가들의 견제로 반도체 등 첨단산 업 분야의 목표 달성은 다소 지연이 불가피 할 것
- 중국제조 2025는 한국에게 **위협이자 기회를 동시에 제공**
- 중국제조 2025는 제조업의 자급률 제고를 통한 수입대체화를 추진하므로 대중 국 수출의존도가 높은 한국 등 기존 제조국가들에게 위협요인으로 작용
- 중국제조 2025가 특정 산업에 투자와 지원을 집중함으로써 태양광 산업과 같이 공급과잉 → 가격하락 → 시장교란 등으로 이어질 가능성이 높음
- 중국제조 2025는 신성장 산업을 중심으로 **새로운 시장 수요와 비즈니스 기회를** 창출하는 등 기회요인도 상존
- 차세대 정보기술, 신에너지 자동차, 고성능 공작기계, 로봇 등을 육성하기 위해 서는 방대한 ICT 분야의 소프트웨어와 장비가 필요
- 중국의 산업구조 고도화로 인하여 **글로벌밸류체인(GVC)의 변화**가 발생
- 중국제조 2025를 통해 중국이 고부가가치 중간재 생산과 수출이 가능하게 될 경우 글로벌밸류체인(GVC)의 변화가 발생
- 한·중·일 중심의 역내 분업구조가 베트남, 인도네시아 등으로 인도·아세 안 지역으로 확장되면서 GVC의 재편이 가속화될 전망

VI 우리의 대응 방안


- 첫째. 연구개발(R&D)투자와 인재영입을 통한 기술혁신 능력 제고
- 미·중 무역분쟁으로 중국의 기술습득이 지연되는 틈을 활용해 신성장 산업 등에 대한 **과감한 연구개발(R&D)투자로 중국과의 기술격차를 확대**해야 함
- 둘째, 인재 유출방지에 대한 철저한 관리가 필요
- 정부차원에서 핵심 산업 인력 빼내기에 대해 강력하게 법적으로 단속
 - * 미국은 경제스파이법을 제정하여 절도죄가 아닌 간첩죄로 강력 처벌
- 기업차원에서는 우수 인력에 대한 정년폐지 등 적극적인 인력 지원방안을 검토
 - * SK하이닉스는 2018년 12월 기술력이 높은 우수 엔지니어에 대해 60세 정년 폐지
- 셋째. 인수합병(M&A)을 통한 첨단기술 유출방지 강화
- 인수·합병(M&A)을 통한 첨단기술 유출 방지를 위해 해외 인수·합병(M&A)에 대한 사전 승인제도를 더욱 강화
- 2019년 1월 3일 정부는 산업기술 유출 근절대책을 발표하여 국가핵심기술을 보유한 기업을 외국기업이 M&A할 경우 사전승인 또는 신고하도록 개정
- * 국가 연구·개발(R&D) 지원을 받아 개발한 국가핵심기술을 보유한 국내기업을 외국 기업이 M&A하는 경우 정부의 사전 승인을 받아야 하며, 국가 R&D 지원을 받지 않은 기업은 신고해야 함
- 그러나 국가핵심기술의 범위와 국가 R&D 지원을 받지 않은 민간기업의 기술유 출 우려가 있어 더욱 강화해야할 필요가 있음
- 넷째, 국제공조를 통해 중국의 불공정 거래 견제
- 중국의 불공정한 관행을 WTO에 지속적으로 제소하는 등 국제공조를 통해 중국의 불공정 행위를 근절하고 견제
- 첨단제품의 보안성을 보장하는 적절한 테스팅 절차 등을 국제표준으로 제정하여여향후 중국산 제품에 의한 정보유출을 방지하는 조치 시행


- 다섯째, 중국제조 2025 추진과정의 시장수요와 비즈니스 기회를 활용
- 중국이 10대 산업을 육성하기 위해서 필요한 ICT 분야의 소프트웨어와 장비 등 새로운 시장수요를 충족시킬 중간재 공급에 역점을 두어 중국시장 공략
- 10대 핵심산업의 기술수준의 편차가 존재하므로 **업종별, 기술 수준별 차별화된** 대응전략 마련 필요
- 중국과의 기술협력을 확대하여 인공지능(AI), 사물인터넷(IoT) 등 첨단산업 분야에서 기술표준을 마련하고 신흥시장에 공동 진출
- 여섯째, 중국 산업구조 고도화에 따른 중국의 중간재 경쟁력 강화와 중국정부 의 견제 등 차이나 리스크에 대비한 시장 다변화 추진
- 중국의 기술경쟁력 상승으로 수입대체화가 가속화될 가능성이 높아 **아세안 등 신흥시장 개척**을 통해 리스크를 축소할 필요성 대두

본 문

- 미·중 무역분쟁이 관세분쟁에서 미래 첨단기술 패권을 둘러싼 기술전쟁으로 확대되면서 '중국제조 2025'에 대한 관심 고조
- 미국은 중국의 불공정행위를 무역분쟁의 명분으로 강조하고 중국정부가 추진 하고 있는 '중국제조 2025'에 대해 공정경쟁에 대한 위협이라고 비판
- 트럼프 대통령은 2018년 11월 "중국제조 2025는 2025년까지 중국이 세계 경제 를 제패하는 것을 뜻한다"고 주장(동아일보, 12.14)
- 윌버 로스 미국 상무장관은 "우리가 정말 반대하는 것은 기술 기밀을 훔치거 나 기술 이전을 강요하는 행태"라고 강조(미국 CNBC 인터뷰. 12.12)
 - * 미국은 중국 정부의 자국 기업에 대한 보조금 지급. 미국기업에 대한 중국 의 기술이전 강요, 지식재산권 침해, 사이버 절도 등을 불공정행로 규정
- 피터 나바로 백악관 무역제조업정책국장은 "향후 수십 년 동안 미국의 일자리 와 성장의 중요한 원천이 될 기술을 중국이 장악하게 할 수 없다. 이것들은 미국과 세계의 미래"라며 중국제조 2025를 직접 겨냥(이데일리, 18.6.20)
- 미국은 기술패권을 선점하고 **중국의 기술추격을 뿌리치기 위해** 반도체, 이동 통신(5G) 등 첨단기술분야에 대해 중국을 견제
- 2015년 칭화유니그룹이 마이크론 메모리반도체 부분을 230억 달러에 인수하려 했으나 미국 등의 견제로 무산
- 미 상무부는 2018년 4월 중국 통신장비업체 ZTE가 대북 및 대이란 제재를 위반했다는 이유로 7년간 미국 기업과의 거래를 금지시킴
 - * ZTE가 혐의 인정, 관련 임원 해고, 일부 직원에 대한 징계, 3년간 독립 감 사 기관의 무역 거래 감시 수용 등을 합의함으로써 수출금지 조치는 해제
- 2012년에는 화웨이와 ZTE는 미국 내에서 5G 통신망 관련 장비 판매 금지

- 2018년 11월, 미국 법무부는 전일 마이크론의 메모리 스토리지 관련 기밀을 절취한 혐의로 푸젠진화와 대만의 거래선 UMC 및 이와 관련된 개인 3명을 기소
- 중국 화웨이 최고재무책임자(CFO)가 미국 요청으로 체포
 - 캐나다는 2018년 12월 1일 대이란 제재를 위반했다는 이유로 명완저우 화웨이 최고재무책임자(CFO)를 체포
 - 중국의 기술굴기를 대표하는 화웨이 최고재무책임자를 체포함으로써 기술패 권을 중국에 넘기지 않겠다는 강한 의지를 보여준 것으로 해석
- 중국제조 2025는 미국 등 기술선진국 뿐만 아니라 한국 등 제조국가들에게 위협이자 기회를 동시에 제공
- '중국제조 2025'는 제조업의 자급률 제고를 통한 수입대체화를 추진하므로 대중국 수출의존도가 높은 한국 등 기존 제조국가들에게 위협요인으로 작용
- 독일의 싱크탱크인 MERICS는 한국이 중국제조 2025로 인해 가장 피해가 클 것이라고 분석

자료: MERICS

- '중국제조 2025'가 특정 산업에 투자와 지원을 집중함으로써 태양광 산업과 같이 공급과잉 → 가격하락 → 시장교란 등으로 이어질 가능성이 높음
 - * 미국은 과거 태양광 산업을 석권하였으나 중국의 태양광산업 육성정책으로 중국 태양광 기업들이 난립하고 패널가격이 폭락하면서 수많은 미국 기업들이 파산
- '중국제조 2025'는 신성장 산업을 중심으로 **새로운 시장 수요와 비즈니스** 기회를 창출하는 등 기회요인도 상존
- 차세대 정보기술, 신에너지 자동차, 고성능 공작기계, 로봇 등을 육성하기 위해 서는 방대한 ICT 분야의 소프트웨어와 장비가 필요
- 추진성과 분석을 통한 우리 기업의 '중국제조 2025' 대응 방안 모색
- 본 보고서는 우선 '중국제조 2025'의 목표와 실천계획 등 주요 내용을 살펴 보고 주요 핵심정책인 10대 산업 육성정책의 추진 성과를 분석
- 그 다음으로 '중국제조 2025' 추진 성과 분석을 통해 우리기업의 대응방법을 모색하고자 함

II. 「중국제조 2025」의 주요 내용

1. 중국제조 2025 개요

- 「중국제조 2025」는 제조강국으로 나아가기위한 **30년 장기 혁신 로드맵**
- 2015년 5월 18일, 국무원은 급격히 둔화된 제조업 활성화와 제조강국 건설 추진을 위하여 '중국제조 2025'계획을 발표
- 리커창 총리가 3월 전인대 정부업무보고에서 처음으로 '중국제조 2025'를 언급한 이후 두 달 만에 계획이 발표됨
- 2015년 6월 국무원은 '중국제조 2025' 전략 추진 전담부서인 '국가 제조강 국건설 영도소조'를 출범
- 영도소조는 국무원 부총리인 마카이를 조장으로 그 외 23개 부처 및 기구의 고위급 인사 25명으로 구성
- 2015년 12월 리커창 총리의 이른바 '볼펜심 개탄'¹⁾ 사건 이후 본격 추진

2. 중국제조 2025 추진 배경

- 중속성장의 신창타이(新常態)²⁾ 시대로 진입하면서 새로운 성장전략 필요
- 중국의 경제성장률 둔화가 가속화되는 등 중속성장의 신창타이(新常態) 시대로 진입하면서 경제성장을 지속할 새로운 성장전략 필요


¹⁾ 리커창 총리는 2015년 12월 전문가 좌담회에서 "우주선도 발사하는 중국이 아직 볼펜심조차 못 만든다"고 개 탄. 당시 중국은 3,000개 볼펜 메이커가 매년 400억개의 볼펜을 생산해 전 세계 공급량의 80%를 공급하였지만 핵심 기술인 볼펜심의 90%를 일본과 독일 등에서 수입. 이후 1년 만에 타이위안 철강이 볼펜심용 2.3mm 두께 고강도 스테인리스강을 개발했으며 2017년 베이파그룹은 이 소재로 만든 100% 중국산 볼펜을 내놓는 데 성공

²⁾ 중국경제의 뉴노멀(New Normal)을 일컫는 말. 중국경제가 고도 성장기를 지나 6~7%의 중고속 성장상태를 의미. 2014년 5월 시진핑 주석이 중국 경제가 개혁개방 이후 30여년간의 고도성장기를 끝내고 새로운 상태로 이행하고 있다고 말하면서 처음 사용

- 중국 제조업의 경쟁력 약화와 낮은 제조업 부가가치
- 임금인상, 인구보너스 감소, 과잉생산 등으로 제조업 경쟁력이 약화되면서 201 4년 이후 제조업 부가가치증가율이 경제성장률을 하회
- 중국은 저임금 노동력을 활용하여 제조대국으로 부상하였으나 혁신역량이 부 족하고 1인당 제조업부가가치(MVA)는 독일의 1/5, 미국의 1/3 수준에 불과
- 글로벌 금융위기 이후 선진국들의 제조업 혁신 전략 추진 등의 시대적 흐름
- 독일의 인더스트리 4.0(2012년), 미국의 국가혁신전략(2011년), 일본의 일본재 흥전략(2013년), 한국의 제조혁신 3.0(2014년) 등 선진국들의 제조업 혁신 기조

<경제성장률과 제조업부가가치 증가율 >

<주요국 1인당 제조업 부가가치>

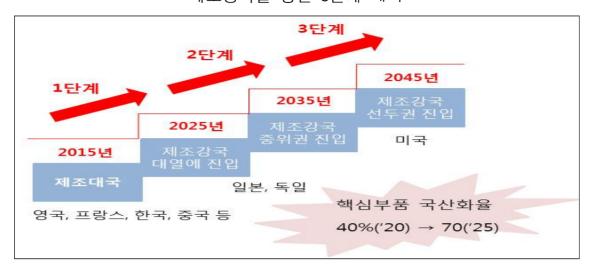
자료: UNIDO

3. 중국제조 2025 추진 목표

- 제조대국에서 제조강국으로 실현
- 향후 30년간 3단계 제조업 혁신을 통해 세계 제조업 선도국가 지위 확립
- 신중국 건국 100주년이 되는 2049년 경에는 미국과 어깨를 나란히 할 수 있는 글로벌 제조강국이 되겠다는 것이 최종 목표
- '중국제조 2025'는 제조강국 실현을 위한 30년의 장기 비전 중 첫 번째 단계

(1) 1단계(2016년~2025년): 제조강국 대열에 진입

- 2020년까지 제조업의 IT 경쟁력을 크게 개선하고 2025년까지 IT와 제조업을 융합하여 4차산업 시대에 맞는 산업구조 고도화 기반 마련
- 국무원은 2015년 7월 「인터넷플러스 적극 추진을 위한 지도의견」을 발표하고 제조업과 인터넷 융합을 통해 스마트 제조를 추진
- 2025년까지 제조업 경쟁력을 강화하여 독일, 일본 등이 속해있는 2그룹에 진입


(2) 2단계(2026년~2035년): 제조강국 중간수준 지위 확보

- 혁신 능력의 제고, 주요 분야에서 핵심성과 달성, 우위산업의 혁신 주도 등세부 목표 추진을 통해 제조강국 중간수준의 지위 확보
- 독일, 일본을 제치고 제조업 2그룹 중 선두지위를 확립

(3) 3단계(2036년~2045년): 제조강국 선도국가 지위 확립

● 제조강국 제1그룹 반열에 합류하고, 제조업 분야에서 경쟁우위를 갖추고 선진 기술 및 산업 시스템을 구축함으로써 세계 제조업을 선도하는 국가로 발전

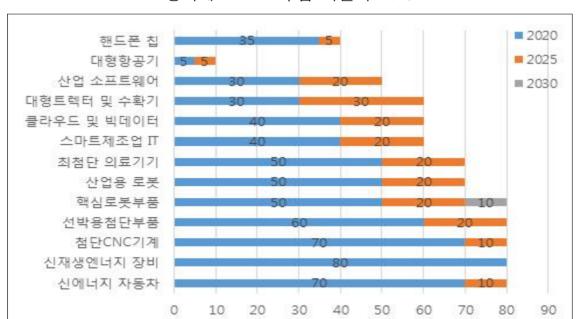
<제조강국을 향한 3단계 계획>

- 제조업 경쟁력 강화를 위해 R&D 투자를 2025년까지 지속적으로 확대
- 제조업 혁신역량을 높이기 위해 일정규모 이상 제조업의 매출액 대비 연구개발 (R&D) 지출 비중을 2013년 0.88%에서 2025년 1.68%로 확대
- 제조업 부가가치 증가율을 2020년까지 2015년 대비 2.0%p 높이고 2025년에는 2015년 대비 4.0%p 높이기로 함
- 매출 1억 위안 당 발명특허수도 2013년 0.36건에서 2025년 1.1건으로 확대
- 기업의 핵심 공정에 사용되는 컴퓨터 수치제어 공작 기계(CNC) 비중을 2013년 27%에서 2020년 50%, 2025년 64%로 점진적으로 확대
- 디지털 R&D 설계도구 보급률을 2015년 58%에서 2020년 72%, 2025년 84%로 점진적으로 제고
- 기업의 산업생산량 단위당 에너지 소모 감축비율을 2015년 대비 2020년에 22%p, 2025년에 40%p 감축

<중국제조 2025의 주요 계획>

(단위: 건, %)

구분	지표	2013	2015	2020	2025
혁신 역량	제조업체 매출액대비 R&D지출 비중	0.88	0.95	1.26	1.68
	제조업체 매출 1억위안당 발명특허수	0.36	0.44	0.7	1.1
	제조업품질경쟁력 지수	83.1	83.5	84.5	85.5
질적 성과	제조업부가가치증가율	_	_	2015년대비 2.0%p 증가	2015년대비 4.0%p 증가
	제조업노동생산성증가율	_	_	7.5	0
T+ 제조업 융합	인터넷보급율	37	50	70	82
	디지털R&D설계도구 보급율	52	58	72	84
	핵심공정 CNC 비중	27	33	50	64
녹색 성장	기업의 산업생산량단위당 에너지 소모 감축비율	_	_	2015년대비 18%p 감축	2015년대비 34%p 감축
	산업생산량 단위당 이산화탄소 배출 감축	_	_	2015년대비 22%p 감축	2015년대비 40%p 감축
	산업생산량 단위당 수자원 사용 감축	_	-	2015년대비 23%p 감축	2015년대비 41%p 감축
	공업용 고체폐기물 사용률	62	65	73	79


4. 10대 핵심 산업 및 5대 중점프로젝트 추진

- 10대 핵심산업 23개 분야를 미래 전략산업으로 육성하여 제조업 경쟁력 강화와 산업고도화를 통해 IT기반 첨단산업 중심의 제조강국으로 전환을 목표
- 반도체, 정보기술(IT), 로봇, 항공우주, 해양공학, 첨단철도, 친환경자동차 등 10대 핵심산업을 선정하여 각종 보조금과 혜택을 부여하면서 집중 육성
- 민간기업이 10대 산업에 투자할 경우 지방정부와 국유기업이 최대 80%까지 투자할 수 있도록 했으며, 10대 산업 분야에서 전략 제품을 개발하면 정부가 '최초 매출'도 보장
- 지금까지 정부가 투자한 금액만 약 3,000억 달러(338조원)에 달하는 것으로 추정

<중국제조 2025의 10대 핵심산업>

	대분류	소분류
	차세대 정보기술	· 집적회로 및 전용 설비 · 차세대 정보통신 · 운영체제(OS) 및 공업용 소프트웨어
	고급 수치제어 공작기계 및 로봇	· 고급 NC 공작기계 · 로봇(산업용 로봇, 서비스용 로봇)
	항공우주 설비	· 항공설비 · 우주설비
10 대	해양 엔지니어 설비 및 첨단 선박	· 해양 엔지니어 설비 기술 · 첨단 선박기술(크루즈, 액화 천연가스 선박 등)
핵 심 산	선진 궤도교통 설비	· 신소재·신기술·신가공 응용 · 안전관리 및 에너지 절약 · 제품의 경량화, 모듈화 등
업	에너지절감 및 신에너지 자동차	· 전기자동차, 연료전지 자동차, 저탄소 자동차 · 관련 핵심 기술(고효율 내연기관, 첨단 변속기 등)
	전력 설비	· 고효율 석탄전력 정화설비, 수력 및 원자력 발전 등 · 신재생에너지, 에너지 저장
	농업 기계 설비	· 첨단 농기구 및 핵심 부품
	신소재	· 특수금속, 고성능 구조재료, 기능성 고분자재료 등 신소재
	바이오의약 및 고성능 의료기기	· 바이오의약 · 고성능 의료기기 및 첨단 의료기술

- 5대 중점 프로젝트 추진을 통해 10대 핵심산업 육성 및 4차산업 대비
- 제조혁신능력센터를 2020년까지 약 15개, 2025년까지 40개 건설
 - 차세대 정보기술, 스마트 제조업, 신소재, 바이오의약 등 분야 수요 충족시키기 위해 주요 업종구조를 전환하고 업그레이드 함
- 스마트 제조 발전에 필요한 기초적 우위 확보
- 2020년까지 △주요 제조업 분야 스마트화 수준 대폭 향상 △시범 프로젝트 운영자본 30% 절감 △상품 생산주기 30% 단축 △불량품 발생률 30% 감소, 2025년까지 각각 50% 감축
- 공업기반 강화를 통한 국산화율 제고
- 핵심기술 부품 및 기초소재 국산화율 2020년까지 40%, 2025년까지 70% 실현 계획
- 인센티브 및 리스크에 대한 보상 메커니즘 구축 및 핵심 기초부품, 선진공법, 중요 기초재료의 최초 사용에 대한 지원 등

<중국제조 2025 부품 국산화 계획>

자료: 중국제조 2025 백서

- 친환경제조 분야에서 세계 선도적 지위 확립
- 2020년까지 1,000개의 친환경 시범공장 및 100개의 시범단지 건설, 중점 업종 주요 오염물질 배출강도 20% 하락, 2025년까지 친환경 제조 분야 세계 선도적 지위 확립
- 전통 제조업 에너지 효율 제고, 수질오염 방지, 자원 순환 이용 등 관련 기술 개선
- 대형 항공기, 스마트그리드 등 첨단 설비 혁신
- 대형 항공기, 항공기 엔진, 가스터빈, 에너지 절감형 및 신에너지 자동차, 해양 프로젝트 설비 및 최첨단 선박, 스마트그리드 등 중점 분야 혁신
- 2020년까지 상기 분야 자주 R&D 및 기술응용 실현, 2025년까지 첨단설비 시장 내 보유 지식재산권 확대, 기초 조립기술 역량 강화

<중국제조 2025의 5대 중점 계획 주요 내용>

계획	주요 내용
제조혁신 능력센터 건설	· 주요 업종구조 전환 및 업그레이드 · 차세대 정보기술, 스마트 제조업, 신소재, 바이오의약 등 분야 수요 충족 · 산업기초 및 핵심기술 R&D, R&D 성과물 산업화, 인재 개발 · 2020년까지 약 15개, 2025년까지 40개 건설
스마트 제조	 주요 제조 공정의 스마트화 및 로봇 대체 생산 공정 스마트 컨트롤, 공급사슬 최적화 중점 분야 스마트 공장 및 디지털 작업 현장 건설 2020년까지 △ 주요 제조업 분야 스마트화 수준 대폭 향상 △시범 프로젝트 운영자본 30%절감 △상품 생산주기 30% 단축 △불량품 발생률 30% 감소, 2025년까지 각각 50% 감축
공업기반 강화	· 인센티브 및 리스크에 대한 보상 메커니즘 구축 · 핵심 기초부품, 선진공법, 중요 기초재료의 최초 사용에 대한 지원 · 4대 공업기반 연구센터 설립, 공공서비스 플랫폼 구축 · 2020년까지 핵심기술 부품 및 기초소재 40% 국산화 실현, 2025년까지 70% 실현
친환경 제조	 전통 제조업 에너지 효율 제고, 수질오염 방지, 자원 순환 이용 등 관련기술 개선 주요 지역 및 업종 친환경 생산수준 제고 관련 계획 시행 2020년까지 1,000개의 친환경 시범공장 및 100개의 시범단지 건설, 중점 업종 주요 오염물질 배출강도 20% 하락, 2025년까지 친환경 제조 분야세계 선도적 지위 확립
첨단설비 혁신	· 대형 항공기, 항공기 엔진, 가스터빈, 에너지 절감형 및 신에너지 자동차, 해양프로젝트 설비 및 최첨단 선박, 스마트 그리드 등 중점 분야 혁신 · 2020년까지 상기 분야 자주 R&D 및 기술응용 실현, 2025년까지 첨단설비 시장 내 보유 지식재산권 확대, 기초 조립기술 역량 강화

III. 「중국제조 2025」추진성과

1. 정책적 성과

- 제조업 혁신센터 건설, 시범도시 건설 등 추진 인프라 구축과 지역별 특성에 맞는 추진 계획 수립 등 **정책적 성과가 나타나기 시작**
- 제조업 혁신센터 건설 등 5대 중점프로젝트 추진 성과뿐만 아니라 각 지역의 특색에 맞는 추진 전략 수립 등 가시적 정책적 성과 도출
- (5대 중점 프로젝트) 2017년말 기준 5개 국가급 제조업 혁신센터와 48개 성급 제조업 혁신센터 건설
- 226개 스마트 제조 종합 표준화 실험·검증·신모델 응용 프로젝트 시행, 109 개 스마트 제조 시범 프로젝트 선정
- 녹색 제조 시스템 구축 착수, 99개 기업의 친환경 설계 시범 프로젝트 운영 중, 51개 국가 저탄소 공업원구 건설, 57개 고위험 오염물 감축 프로젝트 시행
- (핵심기술 프로젝트) 중국 최초 유연성 복합 공업용 로봇 연구개발 성공 및 소량 제품의 공급 능력 향상
- RV 감속기 대량 생산 및 해외 주문 확보, 고조파 감속기 규모화 생산 등
- (제조업과 인터넷 융합) 「중국제조 2025 성·시별 지침서」제정 등 지역별 차별화 발전 전략 수립
- 2016년 말 기준, 29개 성·시 등 지역에서 실시방안 및 지도성 문건 발표
- (품질향상 및 브랜드 육성) '대중창업 만중혁신' 플랫폼을 통해 47%의 대기 업이 협동 혁신플랫폼 구축 및 운영
- 2016년 기업의 디지털 R&D 도구 보급률 61.8%, 핵심공정의 디지털 제어화율 33.3% 달성

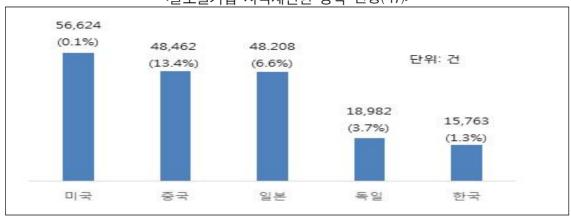
<중국제조 2025의 주요 정책적 성과>

구분	주요 내용
5대 중점 프로젝트	 · (제조업 혁신센터 건설) 5개 국가급 제조업 혁신센터와 48개 성급 제조업 혁신센터 건설(2017년말 기준) · (스마트 제조) 226개 스마트 제조 종합 표준화 실험 • 검증 • 신모델 응용 프로젝트 시행, 109개 스마트 제조 시범 프로젝트 선정 · (공업 인프라 강화) 19개 산업기술 기초 공공서비스 플랫폼 구축 · (녹색 제조) 녹색 제조 시스템 구축 착수, 99개 기업의 친환경 설계 시범 프로젝트 운영 중, 51개 국가 저탄소 공업원구 건설, 57개 고위험 오염물 감축 프로젝트 시행 등 · (첨단장비 혁신) 고속철 및 전기자동차용 핵심소재 개발 진전
핵심기술프 로젝트	· 중국 최초 유연성 복합 공업용 로봇 연구개발 성공 · 소량 제품의 공급 능력 향상 · RV감속기 대량생산 및 해외 주문 확보, 고조파 감속기 규모화 생산 등
시범도시 (군) 건설	· 닝보 등 12개 도시와 4개 도시군 등 총 31개 시범도시 선정(2017년)
제조업과 인터넷 융합	· 지역별 차별화 발전 전략 수립 · 「중국제조 2025 성·시별 지침서」제정 · 2016년 말 기준, 29개 성·시 등 지역에서 실시방안 및 지도성 문건 발표
품질향상 및 브랜드 육성	· 2016년 기업의 디지털 R&D 도구 보급률 61.8%, 핵심공정의 디지털 제어화율 33.3% 달성 · '대중창업 만중혁신' 플랫폼을 통해 47%의 대기업이 협동 혁신플랫폼 구축 및 운영

자료: 대외경제정책연구원 자료를 바탕으로 필자 보완

2. 기술혁신 역량의 제고

- 조만간 연구개발(R&D)투자 규모 미국 추월 전망
- 중국 R&D투자는 2009년 일본을 제치고 세계 2위로 부상한 이후 빠른 속도로 미국을 추격(IMD에 따르면 2016년 기준 미국 5.111억 달러, 중국 2.359억 달러)
- 중국정부는 2017년 중국의 명목 연구개발(R&D) 투자는 전년대비 12.3% 증가한 1조 7,606억 위안(약 2,500억 달러)로 미국의 약 60% 수준



<주요 국가별 R&D 투자(2016년)>

자료: IMD World Competitiveness Yearbook 2018

- 미국 과학위원회는 조만간 중국의 R&D투자가 미국을 추월할 것으로 전망
- 중국의 전년대비 연구개발(R&D) 투자 증가율은 9.8%로 미국(1.6%), 독일(2.5%), 일본(-3.3%). 한국(3.2%) 등 경쟁국들을 크게 상회
- R&D투자가 빠르게 증가함에 따라 중국 기업의 지적재산권 등록 확대
- 중국 기업의 지적재산권 등록건수는 48,462건으로 미국(56,624건)에 이어 세계 2위를 기록
- 중국의 지적재산권 등록 증가율도 13.4%로 미국(0.1%), 일본(6.6%), 독일(3.7%), 한국(1.3%) 등 경쟁국들에 비해 빠르게 증가

<글로벌기업 지식재산권 등록 현황('17)>

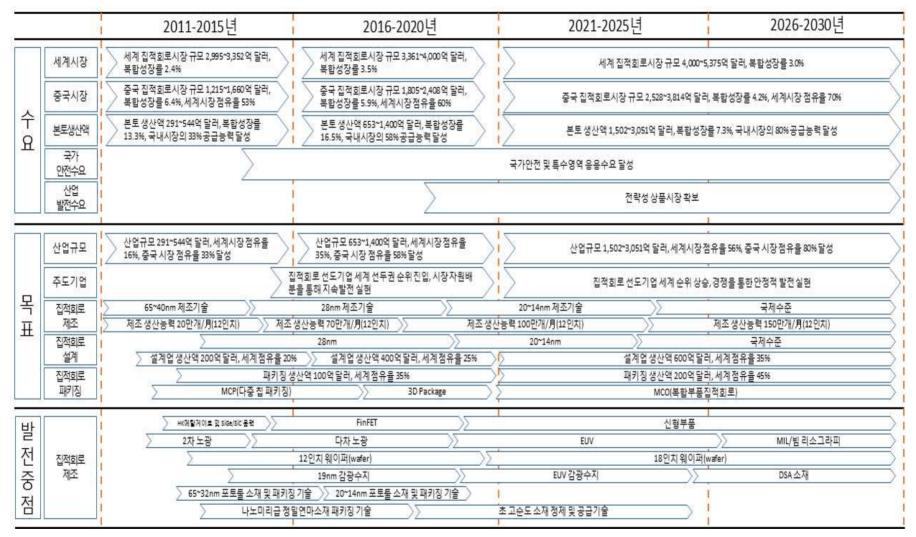
주: ()는 전년대비 증가율

자료: WIPO

- 중국이 미국을 제치고 세계에서 **과학논문을 가장 많이 발표한 국가**로 등극
- 미국 국립과학재단(NSF)에서 발표한 자료에 따르면 2016년 기준 중국은 전세계에서 발표된 과학논문의 18.6%인 426,000여 편을 발표해 409,000편을 발표한 미국(17.8%)을 제치고 처음으로 과학논문 발표 1위국가로 등극
- 경제성장률을 초과하는 제조업 R&D투자 증가로 2020년 목표 달성 전망
- 2017년 매출액대비 제조업 R&D투자 비중은 1.03%로 2020년 목표 1.26%는 무난히 달성할 것으로 전망
- 2017년 제조업 R&D 투자금액은 1,201.3억 위안으로 전년대비 9.8% 증가

<중국 제조업 R&D 투자 변화>

구 분	2011	2012	2013	2014	2015	2016	2017
제조업 R&D투자 금액	599.4	720.1	831.8	925.4	1001.4	1094.5	1201.3
제조업 R&D투자 증가율	49.3	20.1	15.5	11.3	8.2	9.3	9.8
제조업 매출 대비 R&D비중	0.71	0.77	0.80	0.84	0.90	0.94	1.03

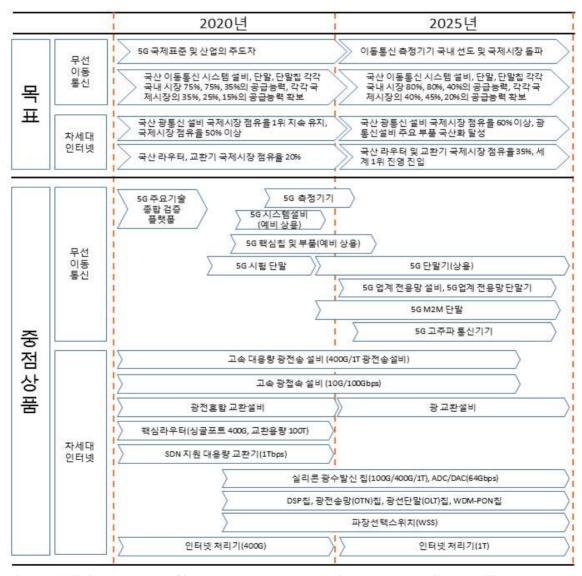

자료: CEIC

IV. 10대 중점 산업 추진 현황

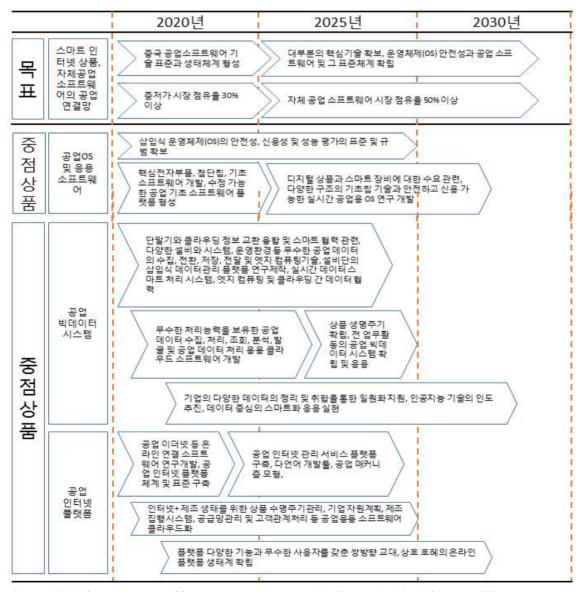
1. 차세대 정보기술

(1) 집적회로 및 전용 설비

- (목표) 2020년까지 세계시장 점유율 35%, 중국 시장점유율 58% 달성하고 2030 년까지 세계시장 점유율 56%, 중국 시장 점유율 80% 달성
- 2020년까지 28nm 반도체 월간 70만개 생산능력을 갖추고 2025년까지 생산능력을 100만개로 확대
- 2020년까지 반도체 설계산업 생산액과 시장점유율을 각각 400억 달러, 25%로 확대하고 2030년까지 생산액 600억 달러, 시장점유율 35% 달성
- 2020년까지 시장자원 배분을 통한 국내 집적회로 선도기업의 세계 선두권 순위 진입 및 경쟁을 통한 안정적 발전 실현
- 패키징 테스트 설비 및 소재 국산화율을 2020년 50%까지 확대하고 2030년 전면적 국산화 실현
- (추진내용) 반도체 설계 수준을 향상. 지식재산권(IP)을 보유한 핵심 설계설비 확대. 전자제품 산업 발전에 필요한 핵심 칩 국산화 사용 확대
- 고밀도 패키징 및 3D 마이크로 패키징 기술을 개발하여 패키징 산업 발전과 테스트 역량 강화를 도모하고 핵심 제조설비를 안정적으로 공급 등
- 국가차원의 산업발전 기금 조성과 금융지원을 확대하고 대학내 관련학과 개설을 통한 인력자원 배양 추진

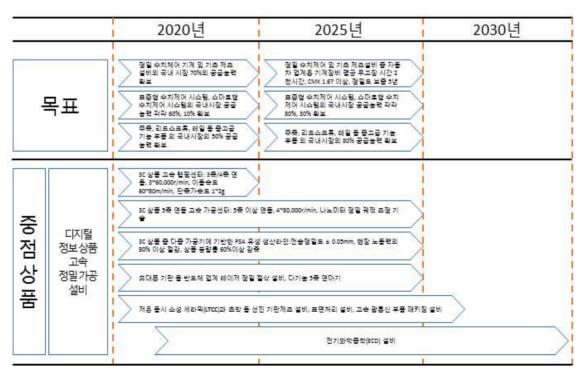


자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)


(2) 정보통신

- (목표) 2020년 5G 국제표준 및 산업의 선도자로 부상
- (추진내용) 신형 PC, 초고속 인터넷, 첨단메모리, 체계적인 보안시스템 등의 핵심 기술을 개선하여 5세대 모바일통신기술, 첨단 라우팅기술, 초고속 대용량 스마트 광전송기술 등을 발전
- 첨단서버, 대용량 메모리, 신형 라우팅, 신형 스마트 단말기, 차세대 기지국, 인터넷보안 장비 등을 개발

(3) 운영체계 및 공업용 소프트웨어


- (목표) 2020년 공업소프트웨어 기술표준과 생태계 구축을 통해 중저가 제품 시장 점유율 30% 확보하고 운영체계 안정성 확보 및 소프트웨어 기술표준 확립을 통해 2030년에는 국내 공업용 소프트웨어 시장점유율 50% 달성
- (추진내용) 보안 관련 OS 등 산업용 S/W를 개발. 스마트 디자인 및 시뮬레이션 설비, 사물인터넷, 산업용 빅데이터처리 등 첨단 산업용 S/W기술을 발전 및 첨단산업 S/W 플랫폼과 응용 어플리케이션을 개발

2. 고급 수치제어(NC) 공작기계 및 로봇

(1) 고급 수치제어(NC) 공작기계

- (목표) 2020년까지 정밀 수치체어 기계 및 기초 제조설비의 국내 시장 70%의 공급능력 확보하고 2025년까지 자동차 업계용 기계장비 평균 무고장 시간 2천 시간, CMK 1.67 이상, 정밀도 보증 5년 능력 달성
- 2020년까지 표준형 수치제어 시스템, 스마트형 수치제어 시스템의 국내시장 공급능력 각각 60%, 10% 확보
- (추진내용) 고정밀・고속・고효율 수치제어, 기초 생산설비 및 통합생산시스 템을 개발. 고정밀 수치제어, 적층 가공(Additive Manufacturing) 등 첨단기술 및 설비 R&D 강화
- 고정밀 수치제어 시스템, 서보모터, 베어링, 래스터 등 주요 기능성 부품과 응용 어플리케이션 개발 및 상용화. 사용자 프로세스 인증 역량을 강화

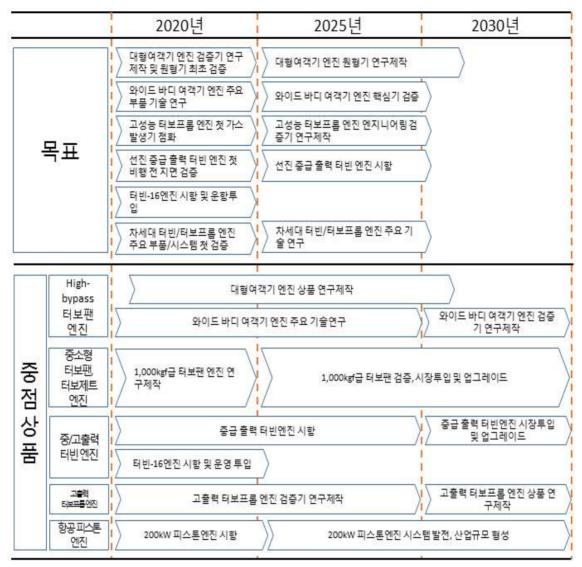
(2) 로봇

- (목표) 지식재산권을 보유한 공업용 로봇 및 관련 부품의 국내시장 공급력을 2020년 50%, 2025년 70%까지 확대
- 2020년까지 국제경쟁력을 갖춘 선도기업 3개 이상 육성하고 2025년까지 세계 상위 5위권 기업 1~2개 육성
- 2020년까지 상품별 평균 고장 간격(MTBF)을 8만 시간 달성
- 2030년까지 국산 로봇 인공지능 기술 보편 응용 가능하게 발전
- (추진내용) 자동차・기계・전자・위험물 제조・국방・화학공업・경공업 등의 산업용 로봇과 헬스케어・가사・교육・엔터테인먼트 등의 특수용 로봇의 신제품 개발을 확대
- 로봇의 표준화 및 모듈화 발전을 추진. 로봇의 응용범위 확대. 로봇 본체, 감속기, 서브모터, 제어기, 센서, 구동기 등 핵심 부품 및 시스템 통합설계 제조
- 국산 용접기계를 자동차, 공업기계, 선박, 석유화학, 농기계, 신에너지 등 다양 한 분야에서 대규모 응용
- 2020년까지 자동차, 전기전자 등 영역에서 국산 조립로봇 시장 점유율 30% 달성토록 추진하고 2030년까지 국산 조립로봇 항공, 각종기기 제조 등 업계에서 시장 점유율 60% 달성
- 가정 서비스 로봇 실내환경 인식, 자동이동, 온라인 융합 및 스마트 가전과 결합, 지시언어 이해 등 기능 탑재
- 가정 서비스 로봇 이동, 다기능 팔 결합, 안전작업, 자가학습, 초보 자연언어이 해 등 기능 탑재, 비교적 복잡한 가사 노동 대체

,		2020년	2025년	2030년
5	루표	지식재산권을 보유한 공업 로봇 및 관련 부품의 국내 시장 50% 공급력 확보 상품평균 고장 간격(MTBF) 8만시간 달성 3개 이상 국제경정력을 갖 춘선도기업육성, 5~8개 의로봇 지원산업군 육성	지식재산권을 보유한 공업 로봇 및 관련 부품의 국내시 장 70% 공급력 확보 세계 5위 안에 드는 1~2 개 기업 육성	
중점 상품	공업 공 로 봇	국산 용접기계를 자동차, 공업 지 등다양한 분야에서 대규모 원 국산 운반로봇, 자동인도운 반차(AGV)를 자동차, 가전, 식품, 의약, 물류등 다방면 에서 대규모 응용 국산 도장로봇을 자동차, 가 구, 선박, 항공등 다방면에 서 대규모 응용 국산가공로봇을 항공, 자동 차, 목제품, 플라스틱제품, 식품 등 다방면에서 응용 자동차, 전기전자 등 영역에 서 국산 조립로봇 시장 점유 율 30% 달성	기계, 선박, 석유화학, 농기계, 신에너 응용 국산 운반로봇의 유연통제와 충 돌테스트 실현 및 로봇혈력작업 시행, 로봇의 소형화, 유연화 실 현 국산 도장로봇 실시간 검축, 자동 도장플랜수립 등 기능 확보, 도장 작업의 무인화, 그린화 실현 제조업 공정 중 연마, 광택, 드릴 등 작업에서 국산스마트 가공로 봇 광범위하게 응용 국산 조립로봇 항공, 각종기기 제 조등 업계에서 시장 점유율 60% 달성	구산 로봇 인공지능 기술 보편 응용
	서비스 로봇	가정 서비스로봇 실내환경 인식, 자동이동, 온라인 용 함 및 스마트 가전과 결함, 지시언어 이해 등 기능 탑재 스마트 휠체어, 침상 등 노 악자, 장애인 보조 로봇의 상품화 및 시범 응용 실현	가정 서비스 로봇 이동, 다기능 팔결함, 안전작업, 자가락습, 초 보 자연언어이해 등 기능 탑재, 비교적 복잡한 가사 노동 대체 다기능 팔과 스마트 휠체어, 침상 등과 결합	가정 서비스 로봇 인간과 비슷한 조작, 인간과의 공용 도구, 인간 과의 자연교류(언어) 등 기능 탑 제 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
		2020년	2025년	2030년
중 점 상 품	서비스 로봇	정형외과 및 강경수술 로봇 임상실형 진입, 소규모 응 용 시행, 재활로봇 산업화	수술로봇의 다양한 모드 융합 하 에 정확한 진료 수행, 대규모 응 용 시행, 재활로봇 임상시험 응용 시행	수술로봇 특정모드에서 일부 스마트 자동 조작시행, 임상 응용시행 및 국제화, 재활로 봇 대규모 응용
		공공안전로봇핵심기술과전 체솔루션 혁신 공공서비스로봇 주요기술 혁신, 소규모 생산 및 시범용 용 시행 로봇 모듈화 설계, 시각화프 로그램 기술을 채용한 교육 로봇 시범응용 및 생산 시행 무인자, 무인기계 등 무인시 스템 핵심기술 혁신, 시스템 시험응용 솔루션 확립	테러방지, 소방, 구조로봇 엔지니 어링 응용 및 서비스 실현 공공서비스로봇 완전한 솔루션 확보, 상가, 은행, 박물관, 호텔등 에서 대규모 응용 교육형로봇 교육체계 정립 및 산 업화 응용 시행 무인차, 무인기계 등 무인시스템 핵심부품 혁신, 핵심기술, 응용환 경, 안전법규 등 체계확립	테러방지, 소방, 구조로봇 산업화 응용 무인차, 무인기계 등 무인시스템 기술, 산업, 환경의 생태계조성, 광범위한 산업화응용

3. 항공우주 설비

(1) 항공설비(항공기, 항공엔진, 항공기 탑재설비)

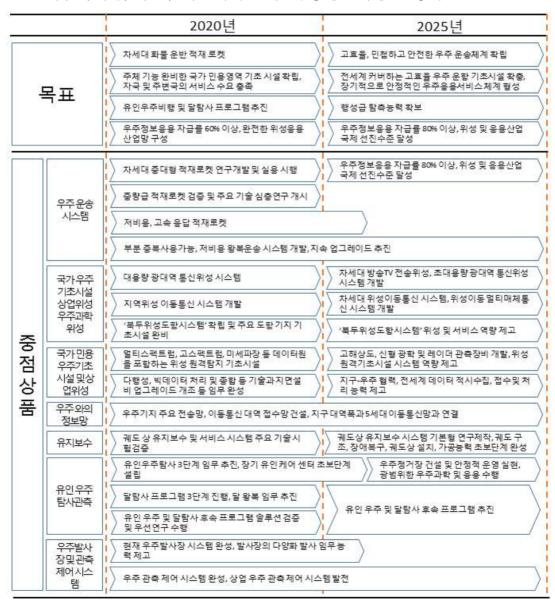

- (목표) 2020년 민용항공기산업 연간 영업이익 1,000억 위안 달성하고 2025년 2,000억 위안으로 2배 확대
- 2020년까지 150석 규모(1통로) 간선항공기 개발・인도하고 2025년까지 280석 규모(2통로) 간선항공기 개발・인도
- 2020년까지 국내시장 5% 공급능력 확보하고 2025년까지 10%로 확대
- 2020년까지 대형 여객기 엔진 검증기 연구제작 및 원형기 검증능력 확보하고 2025년까지 대형 여객기 엔진 원형기 연구제작
- 2020년까지 간·지선 비행기 탑재설비 국내 시장점유율 20% 공급능력 확보하고 2025년까지 30%로 확대
- (추진내용) 대형 항공기 및 기체확장형 기종을 연구·생산. 중형 헬리콥터 생산을 위해 국제협력을 강화
- 간선 및 지선 항공기, 헬리콥터, 무인기 등의 상용화를 도모. 고추진력 중량비, 첨단터보 프롭 엔진, 고바이패스비 터보팬 기술을 개발. 항공기 탑재장비 및 시스템을 개발. 자체 생산이 가능한 항공 산업 사슬을 구축
- 와이드 바디 여객기 엔진 주요 기술연구를 통해 2030년 와이드 바디 여객기 엔진 검증기 연구 제작
- 1,000kgf급 터보팬 엔진 연구제작을 통해 2030년 터보팬 검증 및 시장투입 * kgf: 킬로그램포스는 지구의 표준중력가속도에서 1kg의 질량을 가진 물체가 가지는 힘
- 150개 이상 응용분류의 종합 처리 및 재구성 기능을 2020년까지 실현하고 2030년까지 다양한 정보의 스마트 채집 및 송출 능력 실현

가. 항공기

		2020년	2025년	2030년		
5	루표	민용항공기기산업 연간 영업 수입 1,000억위안 이상 150석급 간선항공기(1통로) 개발 및 인도 간선항공기 인도량 국내시장 5% 공급능력 확보 타보프롬 엔진 지선 항공기 인도량전세계 시장의 5~10% 공급능력 확보 일반 항공기 및 헬리콥터 인 도량각각 전세계 20%, 10% 공급력 확보	민용항공기기산업 연간 영업수입 2,000억 위안이상 280석인급 간선항공기(2통로)개 발 및 인도			
	간선 비행기	9 9 9 9	│ 150석급 간선항공기(1통로) 대량 │ 인도 및 시스템화	시장수요에 맞춘 업그레이드 혹은 차세대 연구개발 280석급 간선항공기(2통로) 대 량인도 및 시스템화		
	지선 비행기	선진 터보팬 지선비행기 대량 인도 및 시스템화 타보프롭 엔진 지선 항공기 대 량인도 선진 70석급 터보프롭 엔진지 선항공기 개발 및 인도	선진 터보팬 지선비행기 명품생산 및 연구개발 완료 타보프롭 엔진 지선항공기 시장에 맞춘 및 시스템화 선진 70석급 터보프롭 엔진 지선 항공기 대량 인도	상황에 따라 차세대 터보팬 지선비행기 연구제작 연그레이드 선진70석급터보프롬엔진지선항공기 업그레이드/스템화		
중 점 상 품	통용 비행기	선진 초급연습기개 산업: 발완료 및 인도 산업:	스템화발전 // 연구제작	기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기		
	헬기	/ 연구제작 및 인도 //	선진 경량 트윈엔진 헬기 대량 선진 경량 트윈엔진 헬기 업인도 선진 중형 다용도 헬기 대량인 선진 중형 다용도 헬기 대량인			
3		I / 구제작 및 인도 // □	도 기계 전 기계			
	무인기	타사 무인기, 감시 무인기, 작업 위 요 충족	P인기, 물류 무인기 등 상품 연구제작, 각 응:	84		

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

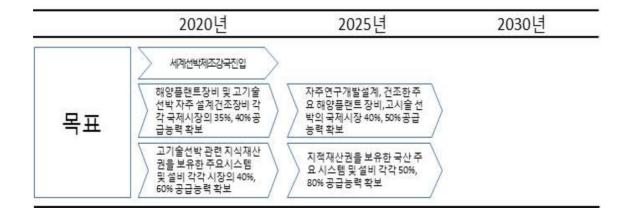
나. 항공엔진

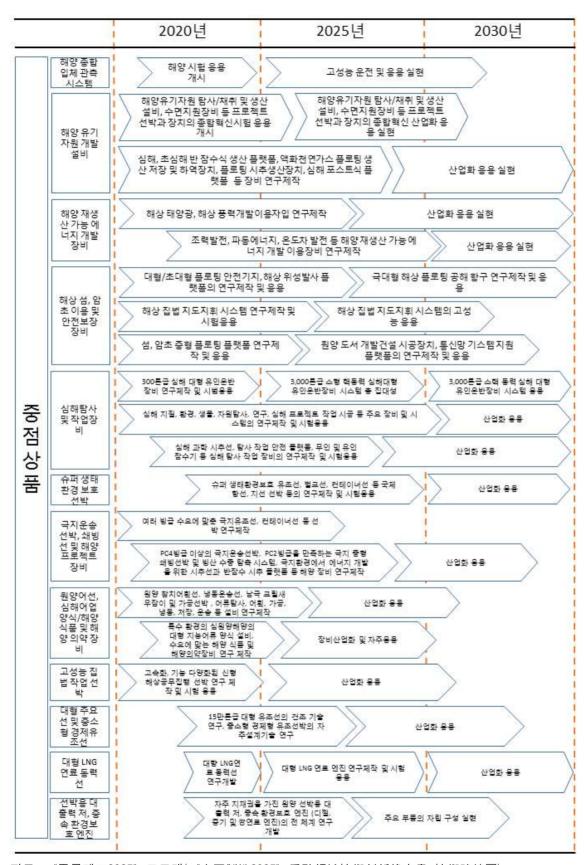

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

다. 항공기 탑재 설비

80			2020년	2025년	2030년					
목표		- Д	간지선 비행기 탑재상품 국내 시장의 20% 공급능력 확보 물용 비행기 탑재상품 국내시 장의 50% 공급능력 확보 와이드 바디 여객기 경쟁입찰	간지선 비행기 탑재상품 국내 시장 의 30% 공급능력 확보 통용 비행기 탑재상품 국내시장의 80% 공급능력 확보 항공기자재설비 및시스템시항						
<u></u>			/ 참여가능기술력확보 /	/ 인증획득, 기술력 해외급 확보	(
		비행관리 시스템	시항 과정에 기초한 비행	관리시스템 시범기 연구제작)					
		종합처리 및 온라인	150개 이상 응용분류의 종합 처리 및 재구성 기능 실현	다양한 정보의 스마트 채집 및 송 출실현	>					
100	함	시스템	고속 안전 온라인 기능	및 개방형 온라인 틀 구성)					
7	용전자	종함 도함 시스템	대기 데이터 참고 유닛, 위성	성도항,무선전자도항 기능 탑재						
1	ヤレム	통제 시스템		해정보 디스플레이 및 인터페이스기능 변경고 기능 제공						
		기재 유지 시스템	상태 및 고장검축, 차폐, 추세 분석 등 기능 탑재	평가모형 예측 충실도 80% 이상						
상 품		통신 시스템		출, 위성통신, 디지털 통신, 주파수 종합, 먼자튜너 등						
古		종합 감시 시스템		방지, 공중교통추세 감지 및 충돌방지 능 탑재						
	4	주 비행통 제 시스템	3축 전송 비행제어	출력 전송기술	광전송 비행제어 시스템 개발					
lo mo	행 통 제		주동제어기능 확보	주동 사이드 레버 기술 확보	주제어, 자동비행, 고양력 일					
1	Ч	고양력시 스템	선진 고양력 시스템 7	장비 국산 간, 지선 여객기	세화					
E	스 템			분포식 고양력 시스템 확보	자가 적용 고양력 시스템 개발					
		유압 시스템	35MPa에 기초한고압시스템 설계	분포식 유압시스템 국산 민용 항공 기 응용)					
		, ,	115V, 넓은 주파수변환 교류전 원 시스템	분포식 자동 배전기능 확보	\					
		전력 시스템	단일 출력 >120kV.A	단일 출력 >250kV.A	\rangle					
		_	230/400V에 기초한 대	출력 전력교환장치 연구제작	<u> </u>					
중점 상품	71	환경제어	3륜 승압식 고압 배수냉각시 스템 장비 국산 수송기	4른 승압식 환경제어 시스템	\					
살	시스	시스템		전동 환경제어 시스템	>					
B	템	보조동력 시스템	가동/발전 일체화 기능 확보	› 다전형 조합 동력 장비 설치 응용	\					
		객실설비	용수/폐수시스템 압력 급수, 진공세척 기술 확보	용수/폐수시스템 민항기 설치 응용	\					
		화물운반	컨테이너식 운반시스템	미끄럼틀식 운반시스템	>					
		시스템		중형 헬기 화물운송 시스템						

(2) 우주 설비

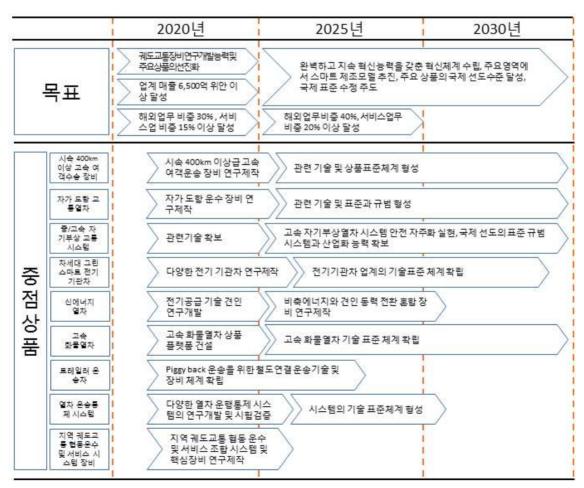

- (목표) 2025년까지 고효율, 민첩하고 안전한 우주 운송체계 확립, 전세계 커버하는 고효율 우주 운항 기초시설 확충, 장기적으로 안정적인 우주응용서비스체계 형성
- (추진내용) 차세대 탑재로켓, 중형 우주발사체를 개발하는 등 우주비행산업 경쟁력을 제고 및 인공위성, 페이로드, 초고속 인터넷망 등 인프라를 구축하고 원격탐사위성, 통신, 네비게이션 등 항공정보역량을 강화



자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

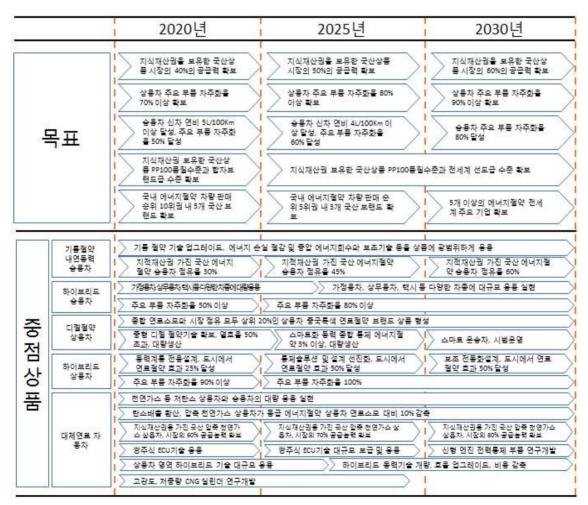
4. 해양 엔지니어 설비 및 첨단 선박

- (목표) 2020년 세계 선박 제조 강국 진입
- 2020년까지 해양플랜트장비 및 고기술 선박 자주 설계건조장비 각각 국제시장 의 35%, 40% 공급능력 확보
- 2030년까지 자주연구개발설계, 건조한 주요 해양플랜트 장비,고시술 선박의 국제시장 40%, 50% 공급능력 확보
- 2020년까지 고기술선박 관련 지식재산권을 보유한 주요시스템 및 설비 각각 시장의 40%, 60% 공급능력 확보
- 2030년까지 지적재산권을 보유한 국산 주요 시스템 및 설비 각각 50%, 80% 공급능력 확보
- (추진내용) 심해탐사, 자원 개발·이용, 해양 안전장비 및 시스템 발전을 추진
- 해저정거장, 대형 부유식 구조물을 구축. 해양플랜트설비 테스트, 모니터링, 검증 역량을 강화하고 해양자원의 개발·이용 수준을 제고
- 크루즈선 설계・건조 기술 수준 향상. LNG선박 등 최첨단 선박의 글로벌 경쟁력을 강화. 보조 장비 통합, 지능화, 모듈화 관련 기술을 확보

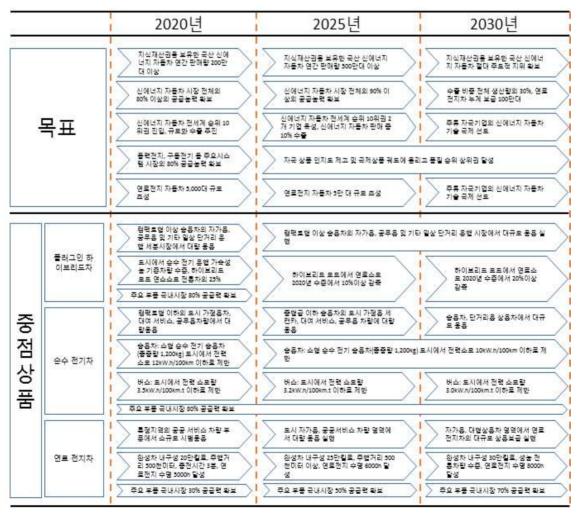


자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

5. 선진 궤도교통 설비


- (목표) 2030년까지 완벽하고 지속 혁신능력을 갖춘 혁신체계 수립, 주요영역에 서 스마트 제조모델 추진, 주요 상품의 국제 선도수준 달성, 국제 표준 주도
- 2025년까지 해외업무비중 40%, 서비스업무 비중 20% 이상 달성
- (추진내용) 신소재・신기술・신공법을 응용. 보안시스템, 에너지 절감 및 환경 보호, 디지털 및 스마트 네트워크 기술을 발전. 친환경, 스마트, 고속 대용량 궤도교통설비 시스템을 구축
- 시속 400km 이상급 고속 여객운송 장비 연구와 관련 기술 및 상품 표준시스템 형성

6. 에너지절감 및 신에너지 자동차

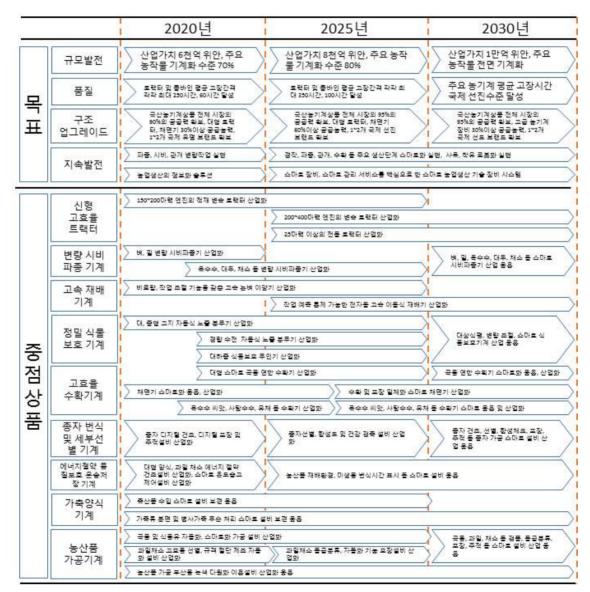

(1) 에너지절감 자동차

- (목표) 지적재산권을 보유한 국산 제품의 시장 공급력을 2020년 40%, 2025년 50%, 2030년 60%로 확대
- 2020년 국내 에너지절감 자동차 판매 상위 10위권내 5개 국산 브랜드 진입, 2025년 국내 에너지절감 자동차 판매 상위 5위권내 3개 국산 브랜드 진입
- (추진내용) 에너지 절감 기술 업그레이드, 에너지 손실 절감 및 중압 에너지회 수와 보조기술 등을 상품에 광범위하게 응용

(2) 신에너지 자동차

- (목표) 지적재산권을 보유한 신에너지 자동차 연간 판매량을 2020년 200만대, 2025년 500만대로 확대
- 지적재산권을 보유한 국산 신에너지 자동차의 세계시장 주도적 지위 확보
- (추진내용) 전기 자동차, 연료전지 자동차를 지속적으로 발전. 자동차의 저탄소・정보화・스마트화 기술을 보유
- 동력전지, 모터드라이브, 고효율 내연기관, 첨단 변속기, 경량소재, 스마트 제어 등 핵심 기술 상용화를 추진

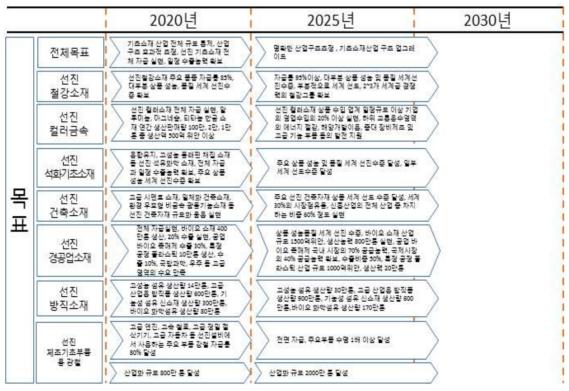
7. 전력설비


- (목표) 선진발전설비 산업규모 매년 1억kw, 국내 에너지 구조조정과 주요 프로젝트 건설수요 충족
- 2020년까지 발전설비 자주화율 90%, 수출비중 20% 달성
- 2025년까지 지적재산권을 가진 신에너지와 재생가능에너지 장비 및 에너지 비축설비시장 점유율 80% 이상 달성하고 해외업무비중 40%, 서비스업무 비중 20% 이상 달성
- 2025년까지 수변전 장비 주요부품 자주화율 95% 이상, 수변전 장비 수출 비중 25% 이상 달성
- (추진내용) 대규모 고효율・청정 화력발전의 상용화 및 시범응용 추진. 대용량 수력발전, 원자력발전, 중형 가스터빈 제조 수준 제고.
- 신재생에너지설비, 첨단 에너지저장장치(ESS), 스마트그리드 송전·변전 등을 발전
- 고성능 전력전자부품, 고온 초전도소재 등 핵심 소자 및 부품의 응용기술을 향상시키고 상용화를 추진
- 2020년까지 1,200MW등급 초임계 설비, 32~35MPa/600℃/620℃/620℃(2차재가 열), 발전효율 48% 달성
- 2030년까지 교류 직류 혼합 소형 배전망 설비 및 직류 배전망 설비 발전

		2020년	2025년	2030년
Ī	목표	선진발전설비산업규모매년1억 (40)국내에너지구조조정과주요 프로젝트건설수요충족 기술수준 국제선진수준 달성, 세계 강국대열 진입 발전설비 자주화율 90%, 수출비중 20% 달성	자금, 규모, 기술, 품질, 브랜드 경쟁력과 핵심 경쟁력을 갖춘 글로벌 기업그룹 형성 지속 혁신능력을 갖추고 대형 화력, 수력, 원자력 등 세트장 비 국제 선도수준 달성 지적재산권을 가진 신에너지 와 재생가능에너지 장비 및 에 너지 비축설비시장 점유율 80% 이상 달성	
	청결고호을 석란발전설 비	1,200MW등급 초임계설비, 32°35MPa/600°C/620°C/ 620°C(2차재가열), 발전효율 48% 달성 고매개 630°C 등급 초임계2 차가열설비, 35MPa/615°C/630°C/ 630°C, 발전효율 50% 달성 600MW 초임계 순환유동보일 러연구제작 1,000MW 초임계 순환유동보일러 배출 대형 석탄가스화복합발전(IGCC)실 토이상 처리 가능한 유동화 메탄2		
저 점 수 명	중행 가스터 반 발전설비	50~80MW 가스터빈발전장비, 분포식 발전, 연합순환효율 45% 이상 조저열 E급 중형 가스터빈 발전장 범위 2.8~6.5MJ/kg, 연합순환효율 F급 300MW 중형 가스터빈발전설 출력 450MW, 연합순환효율 58%	53% G/H급 400MW 중	 - -
	대형 선진 원 자력 발전 설 비	1000, 1500MW급 3대 대형 선 진 가압수형 뭔자력 설비	/급 3대 대형 선진 가압수형 뭔자력 설비	
	대형 선진 수 력발전 설비	용량 150~400MW, 속도조절 범위 1000MW등급수력 터빈 발 전설비, 국제 선도의 초대형 수력 터빈발전설비, 낙자 200m, 설비효율 96% 고낙자 대용량의 충격식 수력터빈 300~1000MW급 충격식 수력터빈		
	재생가능 에 너지 발전설 비	5~8MW등급 품력발전 설비	비, 선진 풍력발전 설비 출력	

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

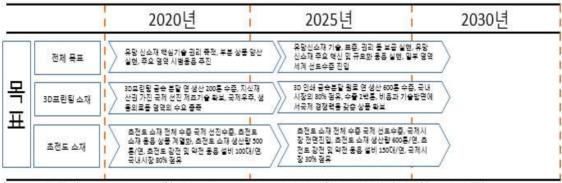
8. 농업 기계 설비


- (목표) 주요 농작물 기계화 수준 2020년 70%, 2025년 80%까지 확대
- 국산농기계상품 전체 시장의 95%의 공급력 확보, 대형 트랙터, 채면기 60%이상 공급능력, 1~2개 국제 선진 브랜드 확보
- (추진내용) 대형 트랙터, 복합 작업기, 대형 수확기 등 첨단 농업기계장비 및 핵심 부품의 발전을 추진

9. 신소재

(1) 선진 기초 소재

- (목표) 2020년까지 기초소재 산업 전체 규모 통제하여 산업구조 효과적 조정, 선진 기초소재 전체 자급 실현, 일정 수출능력 확보
- 2025년까지 선진 철강 주요 소재 자급률 95%이상, 대부분 상품 성능 및 품질 세계선진수준, 부분적으로 세계 선도하고 2~3개 세계급 경쟁력의 철강그룹 확보
- (추진내용) 특수금속 기능성소재, 고성능 구조재료, 기능성 고분자소재, 특수무 기질 비금속재료, 첨단복합소재를 중점적으로 발전
- 복잡, 극단의 환경에서 소재 행위 연구, 간결화 제련기술, 성능 세분통제 및 명확한 성형, 철강소재 고효율, 녹색 제조 기술 및 설비 등 관건 기술 발전



자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

(2) 유망 신소재

- (목표) 2020년까지 3D프린팅 금속 분말 연 생산 200톤 수준, 지식재산권 가진 국제 선진 제조기술 확보, 국제우주, 생물의료등 영역의 수요 충족
- 초전도 소재 전체 수준 국제 선진수준, 초전도 소재 응용 상품 계열화, 초전도 소재 생산량 500톤/연, 초전도 강전 및 약전 응용 설비 100대/연, 국내시장 80% 점유

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

(3) 주요 전략 소재

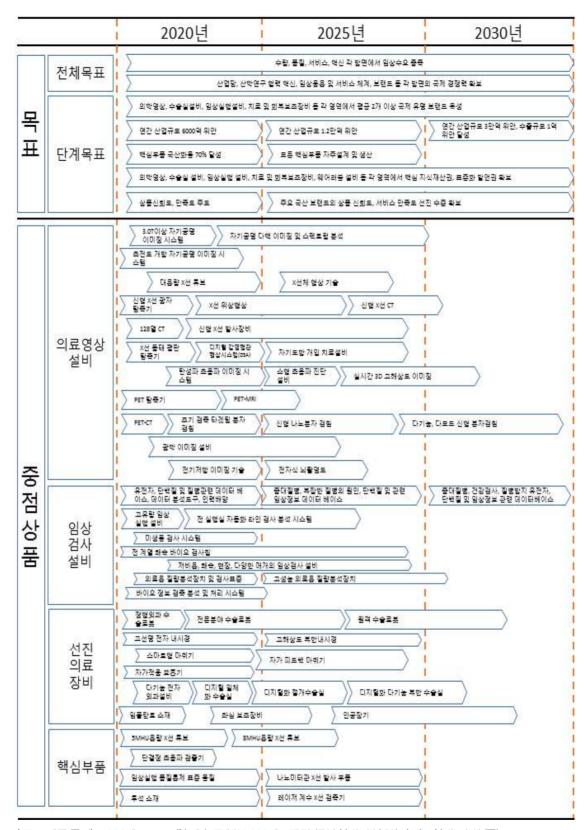
■ (목표) 2025년까지 고급 제조업 중점영역에서 필요로 하는 전략 소재 제약문제 기본적으로 해결, 주요 전략소재 종합 보장능력 85%이상, 부분 상품 국제공급 체계 합류, 자주지식 재산권 체계 실현

		2020년	2025년	2030년
	전체목표	90중 이상 주요 전략소재 산업화 및 시범용용, 차세대 정보기술, 고급 장비 제조업 등 전략성 신흥산업 발전수요 해결, 주요 전략소재 중한 장농력 70% 초과, 액신 주진	고급 제조업 중점영역에서 필요로 하는 전 재 제약문제 기본적으로 하결, 주요 전략실 한 보장능력 85%이상, 부분 상품 국제공급 한류, 자주지식 재산권 체계 실현	. T S V.
	고급 장비용 특수합금	기기스재 산업규모 150억 위안, 고급 특수강 신 업 규모 2천억 위안, 주요 고문한글 안정궁급 4 력 확보, GH4196만 5천건, GH4698만 3백건, #GH4097제작 건 3백건, 자급를 50%이상		현재
	고성능 분리 막소재	막 분리 성능 20% 제고, 비용 10*20% 감독, 피막병 정화 수용장비의 국산화물 70% 이 성. 해수답화용 반원투박 소재 시장의 30% 공급력 확보, 고용기체본리막 공정화 응용 실변, 배기 제거용 95.9%, 침투기화막 소재 의 침투량 20% 제고	수처리만 소재의 비용 20% 감종, 목수본 막 및 기체분리막 에너지스로 20% 감종, 리단 소지를 핵심으로 하는 분리당비 성 만한, 설탕화학 등 공업의 주요 분리수단 로 설정, 분리호등 30% 제고, 국산화용 50 이상	문 유 오
	고성능 섬유 소재	국산 탄소설유 부만소재 대형합공기 중 주요장 비의 기술수요 중독, 해당 및 건축 공항, 신에 지 차장제조에 시범용용, 국산 탄소설유 연간 사용할 4번통 이상		HACE \
목표	신에너지 소재	태양광 산업 기술 전면 혁신, 신형 태양전지 성능 국제수준 도달, 리통전지 산업 규모 세 계 선무권, 비용 50%절감, 안전 및 수명 시장 수요 중품, 연료전지 시스템 및 주요 소재 대 량 생산능력 확증, 귀금속 용량 50% 감품	태양광 산업 국제선도, 신형 태양전지 대 용통, 리름전지 산업 규모 세계 최고 달성 등 및 비용 전등차와 대규모 에너지비중의 와 용용수요 줄든, 신형 저비용 고용량 전 스템 규모용용단계 진입, 연료전지 시스템 주요 소재 상업와 생산 및 판매 실현	, 성 EAI 지시
ш	생물의학용 소재	산업규보 8천역위안, 국제시장 22%의 공급력 회 중, 고급상품 국산화용 20*30% 달성	산업규모 2만역 위만, 국제시장 30%의 공급 중, 고급상품 국산화용 40**50% 달성	PR 8
	전자세라믹 및 인공크리스털	전자세라믹 산업규머 500억 위안, 국내시장 100 이상의 궁급력, 고급상품 역신	전자세라믹 산업규머 800억 위안, 국내시장 이상의 공급력, 신병크리스털 소재 기초 연 발, 산업화 주요 기술 연구개발	
	희모기능소재	2*3개의 5*10만론급 의료류 소재, 중진소재 8 산업기지 경설, 의료기능소재 생산량 45만론 (REO 15만론), 산업규모 800억위안, 시장점유(55%이상, 수줍비중 30%, 자급통 70% 달성	∖ 농소재 산업기지 건설, 회로기능소재 생산	환 장점
	선진 반도체소재	제3대 반도체 소재 제조 주요 기술, 국제 선진 수준 확보, 이름통신, 소호을 전원관리 구선및 30%, 대양광발전 인버터, 이름통신명역에서 규모와 실면, 통용 조명시장 침투을 50%, 430mm 실리콘탄 집 생산력 2톤 이상		I T
	신형디스플레 이 소재	인쇄 디스플레이 소재 국산화용 45%, 산업규: 500억 위안/면, 유성 디스플레이소재 산업규: 100억위안/면, 레이저 디스플레이 소재 산업/ 치 30억 위안/면 주가	모 \\ 1500억 위안/면, 유성 디스플레이소재 산1	결규 \

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

10. 바이오의약 및 고성능 의료기기

(1) 바이오 의약


- (목표) 2020년까지 기업의 약품품질표준 및 체계 국제수준 실현하고 2025년 국제 바이오 기술 약품 및 화학약물 국제표준 제정에 참여
- 100개 약품조제기업 미국. 유럽. 일본. WHO 인증 취득 및 상품 수출 실현
- 2030년까지 중대 질병 및 일부 희귀병을 위한 화학약물, 중약 및 바이오기술약 물 신상품, 30~35개 혁신약물산업화 실현, 10~15개의 국산 약물 FDA 혹은 유럽 인증과 WHO 통과, 국제시장 진입

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

(2) 고성능 의료기기

- (목표) 산업망, 산학연구 협력 혁신, 임상응용 및 서비스 체계, 브랜드 등 각 방면의 국제 경쟁력 확보
- 의학영상, 수술실설비, 임상실험설비, 치료 및 회복보조장비 등 각 영역에서 평균 2개 이상 국제 유명 브랜드 육성
- (추진내용) 의료기기 혁신성 및 상용화 수준을 제고. 영상장비・의료용 로봇 등 고성능 진료장비 및 혈관 내 완전분해 스텐트 등 고부가가치 의료용 소모품을 개발. 웨어러블, 원격 진료 등 모바일 의료서비스에 필요한 제품을 개발.

자료: 《중국제조2025》로드맵(《中國製造2025》重點領域技術創新綠皮書-技術路線圖)

V. 주요 중점산업 추진 성과

- 차세대 첨단산업 분야에서 가시적 성과를 내면서 항아리(腰鼓) 형태로 발전
- 5G, 고속철도, 전력장비(태양광 포함) 등 3개 산업분야에서 기술혁신을 선도
- 반면, **반도체, 민간항공장비는** 대규모 투자에도 불구하고 세계 수준과 여전히 격차가 존재하여 2025년에도 수요의 50% 이상을 수입에 의존할 것으로 전망
- 그 밖에 고정밀 수치제어 장비, 로봇, 항공우주장비, 해양장비 및 첨단기술선박, 에너지절약 및 신에너지 자동차, 농업기계장비, 신소재, 바이오의약 및 고성능 의료기기 등 분야에서는 계획에 따라 순조롭게 추진 중

1. 전기차

- 중국, 전기차 생산 및 판매 전세계 1위로 시장 주도
- 정부의 적극적 지원과 글로벌 업체와의 합작 등으로 **전기차 시장을 주도**
- 2017년 글로벌 시장에서 순수 전기차와 플러그인 하이브리드차, 수소전기차를 합친 **친환경차 판매량 1위는 109,485대를 판매한 중국의 비야디(BYD)임**
- 중국 정부는 대기오염이 심각한 사회적 문제로 떠오르자 2015년부터 친환경차 구매보조금을 지원하고 충전 인프라를 늘리는 등 전기차 시장 활성화를 지원
- 전기차 배터리 출하량에서도 자국 **전기차 시장을 발판으로 세계 1위로 등**극
- 2017년 1~5월 CATL의 출하량은 1위인 파나소닉의 1/4 수준이었으나 1년만에 출하량이 4배 이상 늘면서 파나소닉을 제치고 1위로 등극
- 중국의 기술력은 한국에 3~4년 정도 뒤처져 있지만 격차가 빠르게 좁혀지고 있으며 가격경쟁력에서 크게 앞서 향후 가장 위협적인 경쟁국이 될 전망

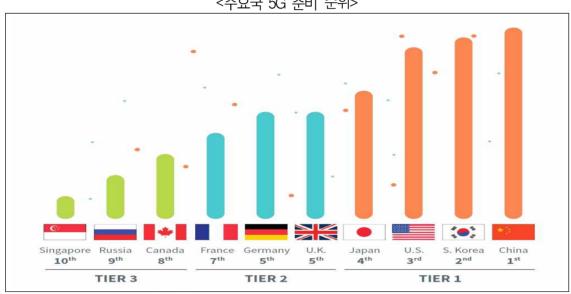
- 삼성SDI는 니켈 함량을 60%로 높인 NMC 622 배터리를 공급하고 있으며 향후 리튬과 코발트, 망간 비율이 8:1:1인 NMC 811 배터리로 직행할 계획인 반면, CATL은 NMC 111에서 NMC 532 단계로 넘어간 것으로 추정(키움증권. 18.6.26)
- 반면, 에너지저장장치(ESS)의 기술력은 한국이 압도적 우위를 차지

<세계 전기차 판매량('17)>

순위 제조사 판매량(대) 국가 1 비야디 109,485 중국 2 북경자동차 103,199 중국 3 테슬라 103,122 미국 4 BMW 97,057 독일 5 쉐보레 54,308 미국 6 니싼 51,962 일본 7 토요타 50,883 일보 8 로위 44,661 중국 9 폭스바겐 43,115 독일 즈더우 중국 10 42.484 현대자동차 23,456 하국

주: 전기차, 플러그인, 수소전기차 포함

자료: EV Sales Blog


<전기차 배터리 출하량(MWh) 순위>

순	2017년 1-	-5월	2018년 1-5월		
위	제조사	제조사 출하량		출하량	
1	파나소닉)	3,479	CATL	4,311	
2	LG화학	1,159	파나소닉	4,303	
3	CATL	960	BYD	2,424	
4	BYD	938	LG화학	2,126	
5	삼성SDI	789	AESC	1,485	
6	AESC	789	삼성SDI	1,091	

주: SNE리서치

2. 차세대 이동통신 (5세대 통신; 5G3)

- 4G(4세대 통신) 서비스에서는 뒤쳐졌던 중국이 5G 경쟁에서는 선두권 유지
- 미국무선통신산업협회(CTIA)는 중국이 5G 준비과정에서 가장 앞서나가고 있 으며 **통신장비뿐만 아니라 원천기술도 대거 육성**하고 있다고 평가 ('18.4)
- 보고서는 중국과 한국, 미국, 일본 등 4개국을 5G 경쟁에서 가장 앞서는 1등급 국가들로 평가했으며, 영국과 독일, 프랑스는 2등급으로 분류

<주요국 5G 준비 순위>

자료: 미국무선통신산업협회(CTIA)

- 몰렌코프 퀠컴 CEO는 중국 IT기업들이 5G시대에는 애플 삼성을 제치고 스마 트폰 업계 정상에 올라 설 것 이라고 단언(FT 인터뷰. 18.5.29)
- 정부의 적극적 지원과 통신 3사와 화웨이, 중싱(ZTE) 등 통신업체가 5G 개발과 상용화를 주도하고 있고, 2019년 5G 시범상용화, 2020년 대규모 상용화를 목표
- 중국정부는 향후 7년간 5G 기술육성에 5,000억 위안 투자 계획을 발표하고 2030년 5G 기술분야에서 세계 최강국으로 도약하겠다고 선언

³⁾ 데이터 전송 속도가 현재 LTE(4세대 이동통신)보다 최소 20배 이상 빠른 통신 기술. 반경 1km 이내에 사물인터 넷 기기 100만개 이상을 동시에 연결할 수 있고, 데이터 전송 지연 시간도 0.001초 이하로 사실상 실시간 전송 이 가능하다. 이런 특징 때문에 자율주행차, 가상·증강현실(VR·AR), 인공지능(AI), 스마트시티 같은 4차 산업혁명 서비스의 핵심 인프라로 꼽힘

5세대 이동통신(5G)

- □ (개념과 특징) 정식 명칭은 'IMT-2020'으로 기존 무선통신(4G) 대비 20배 빠른 초고속, 10배 짧은 초저지연, 10배 많은 초연결 무선통신 기술
 - (초고속성) AR/VR 및 홀로그램 등 대용량 전송이 필요한 서비스를 제 공하기 위해 더 많은 안테나를 사용하여 사용자당 100Mbps에서 최대 2 0Gbps까지 훨씬 빠른 데이터 전송속도 제공
 - (초저지연성) 로봇 원격 제어, 자율주행차량, 실시간 interactive 게임 등 실시간 빠른 반응속도가 필요한 서비스를 제공하기 위해 기존 수십 밀리 세컨드(1ms=1/1,000초) 걸리던 지연시간을 1ms 수준으로 최소화
 - o (초연결성) 수많은 각종 IoT 기기들이 상호 연결되어 작동할 미래환경을 제공하기 위해 1km² 면적 당 1백만개의 연결(connection)이 가능

<4G와 5G의 요구사항 비교>

항목	4G	5G
최대 전송속도	1Gbps	20Gbps
사용자 체감 전송속도	10Mbps	100Mbps
주파수 효율성	-	хЗ
면정당 데이터 처리량	0.1Mbps/m ²	10Mbps/m²
지연시간	10ms	1ms
최대 기기 연결 수	십만/km²	백만/km²
에너지 효율성	-	x100
이동성	350km/h	500km/h

자료: 삼성전자

<중국의 5G 추진 현황>

구분	주요 내용
차이나텔레콤	· 2019년 5G 시범서비스 실시(란저우, 청두, 선전, 슝안, 상하이 등) · 2020년 정식 상용화 목표
차이나모바일	· 베이징, 상해, 쑤저우, 광저우, 닝보 등에서 실외 테스트 실시 · 2019년부터 구축해 20년 대규모 상용화 예정 · 화웨이, 노키아 등 40여개 업체와 공동 기술개발 착수
차이나유니콤	· 베이징, 상해, 텐진, 선전, 항저우, 난징, 슝안 등 7개 지역에 5G 시범 기지국 설치 · 2019년부터 구축해 20년 대규모 상용화 예정 · 화웨이, ZTE 등과 기술협력, 선전, 상하이 등 기술협력 연구소 설립

자료: KT경제경영연구소

■ 화웨이, 인텔과 세계최초 5G 단독규격 운영성 테스트 성공

- 화웨이는 2018년 12월 인텔과 공동으로 국제 5G 표준인 3GPP 릴리즈-15 및 SA 아키텍처를 기반으로 한 5G NR 상호운영성 및 개발 테스트를 성공
 - * SKT는 2018년 10월 15일 삼성전자와 5G 상용장비로 NSA기반 퍼스트콜에 성공

※참고: NSA (Non-Standalone) 구조와 SA (Standalone) 구조

- O NSA는 초기 상용망에 구현될 것으로 예상되는 구조로, 단말의 이동성 (mobility) 관리 등을 담당하는 제어 플레인 (controlplane)의 동작은 4G L TE 망을 활용하면서 사용자 플레인(User plane/Data plane)에 해당하는 데이터 트래픽은 5G 망으로 주고 받음
- O SA 구조는 제어채널이나 데이터 채널 모두 5G의 자체 구조를 사용하는 구조. NSA구조보다 기술 개발이 어렵지만 향상된 서비스 품질을 제공할 수 있음
- 화웨이는 2018년 2월 모바일월드콩그레스(MWC)에서 세계 최초로 상용화 가능 한 3GPP R15 기술표준 기반 5G 마이크로칩을 출시
- **중국정부의 강력한 지원과 기업의 연구개발 투자**로 중국 통신장비 업체인 화웨이가 2017년 에릭슨을 제치고 세계 1위로 부상
- 특히, 화웨이는 높은 기술력과 낮은 가격(20~40%)으로 가성비를 앞세우면서 글로벌 시장으로 진입을 확대하였음

- 2011년 시장점유율 15%에 불과하였던 화웨이는 높은 기술력과 가성비를 앞세워 2017년 글로벌 시장의 약 28%를 차지하며 세계 1위의 통신장비 업체로 성장
- 화웨이와 ZTE를 합할 경우 중국기업의 세계 시장 점유율은 41%
- 글로벌 통신장비는 화웨이, 에릭슨, 노키아의 3강 구도가 확고하지만, 최근 미국의 규제강화로 중국산 제품이 배제되면서 경쟁력 변화 조짐을 보임
- 2018년 4월 미국이 대북 및 대이란 제재를 위반한 혐의로 ZTE에 대해 미국 기업과 의 거래를 중지시키면서 2018년 2분기 글로벌 시장점유율이 3.7%로 하락 (델오로)
- ZTE는 통신장비의 핵심부품을 미국에 의지하고 있어 제품생산이 어려워진 것이 점유율 하락의 원인으로 지목됨
- * ZTE가 혐의를 인정하고 관련 임원 해고, 일부 직원에 대한 징계를 포함해 3년간 독립 감사 기관의 무역 거래 감시를 받는 조건으로 미국의 수출금지 조치는 해제

<글로벌 통신장비 업체 시장점유율 변화>

(단위: %)

장비업체	2011	2012	2013	2014	2015	2016	2017	2018 Q2
화웨이	15	17	18	21	25	25	28	31.2
에릭슨	37	35	34	30	27	28	27	29.8
노키아	14	15	14	15	15	24	23	23.9
ZTE	9	9	9	9	12	12	13	3.7
삼성전자	4	4	6	6	4	4	4	9.0

주: 2017년까지 자료는 IHS 마킷 데이터, 2018년 2분기 자료는 델오로 데이터 자료: IHS 마킷, 델오로

3. 고속철도

- 중국은 선진 외국 기술을 받아들이고(引進) 소화해서(消化) 중국식으로 다시 혁신하면서(再創新) 고속철 원조인 **프랑스, 일본 등과 세계 시장서 경쟁**
- 중국은 2004년 자국 고속철 시장을 개방하면서 알스톰, 지멘스, 봄바디어, 가와 사키중공업 등 외국 기업들과 합작을 통해 선진기술을 인수
- 선진기술을 받아들이고 재혁신 하면서 중국 고속철 시장에서 중국 업체의 점유 율은 2004년 30% 미만에서 현재 80%까지 확대
- 전 세계 고속철도의 약 66%에 해당하는 25,000km의 고속철도를 보유
- 중국 고속철도 길이는 25,000km(15,500마일)로 세계에서 가장 길며 스페인이 3.100km(1.926마일)로 2위를 기록
- 중국은 고속철 선로가 전체 선로의 29%정도를 차지하고, 상시 운행 속도가 시속 350 킬로미터로 세계에서 가장 빠름(프랑스・일본 320km, 한국 300km)
 - * 최고시속은 일본 603km, 프랑스 575km, 중국 501km 순이며 한국은 421km
- 중국은 시속 350km 고속철 무인운전 시스템 개발하였으며 2020년까지 시속 600km 자기부상열차를 개발할 계획
- 중국철로통신신호공사는 고속철 무인운전 시스템 'C3+ATO'의 실험실 테스트를 마쳤으며, 2022년 베이징 동계올림픽 때 공동 개최지 허베이(河北)성 장자커우(張家□)를 연결하는 무인 고속철도를 내년까지 독자 기술로 건설할 예정

<세계 고속철 평가>

국가	일본	프랑스	중국	한국	스페인	독일	타이완
최고시속(km)	603	575	501	421	404	368	300
운행시속(km)	320	320	350	300	320	320	300
고속철비중(%)	13.23	6.79	29.22	1.62	20.05	4.75	21.84

자료: 고유로(https://www.goeuro.com), kbs 재인용

4. 초고압직류전송(High Voltage Direct Current; HVDC)4)

- 전세계 HVDC시장의 80%를 차지하며 글로벌 강국으로 부상
- 중국은 1990년대 초 지멘스, ABB등으로부터 기술을 넘겨받아 국산화를 추진
- 중국은 기술공여를 받지 않으면 시장을 개방하지 않는 전략으로 HVDC 기술을 확보하고 발전시킴
- HVDC 국산화를 위해 정부 산하기관인 CEPRI가 연구를 주도하면서 전력사, 제작업체, 연구계 및 학계 등과 중장기 로드맵을 마련
- 현재 500kV, 800kV는 완벽히 상용화를 마쳤으며 1,100kV 기술을 개발 중
- HVDC 도입 초기 3MW 프로토타입을 만들고 18MW로 실증사업을 했던 중국 HVDC 기술력은 최근 1,000MW 규모까지 상승
- * 한국은 당진화력발전소에서 만들어진 전력을 안정적으로 수도권에 공급하기 위해 500kV 북당진-고덕간 HVDC 건설 중
- 29개의 HVDC프로젝트를 운영 중에 있으며, 7개 프로젝트를 건설 중
- 2010년 7월, 세계 최초로 샹지아바-상하이 2,071km 구간에 ± 800kV HVDC를 적용하는데 성공하였으며 준동발전소와 쓰촨성을 연결하는 HVDC사업 추진

<중국 주요 HVDC 연구 기관>

프로젝트	기관 개요	기술개발 내용
CEPRI	· 중국전력망공사 산하 전력연구원 · 직원수 3,200여 명	· 전류형 A5000 UHVDC밸브 독자 개발 · VSC HVDC 시범운영 ('11.05, 아시아 최초)
XJ GROUP	· 중국전력망공사 소유기업 · DC 송전 컨버터 생산	· HVTV 싸이리스터 밸브 개발 · DPS 2000 DC 송전 보호시스템 개발
CHINA XD GROUP	· 초고압 AC, DC 송·배전 관련 연 구/생산	· 고압 HVDC용 변압기 개발 및 제작 · 해저 HVDC 케이블 기술 확보

자료: 중앙일보 2017.04.13일자

⁴⁾ 고압직류송전(HVDC)이란 발전소에서 생산된 교류전력(AC)을 직류(DC)로 변환해 필요한 곳까지 송전한 뒤 다시 교류로 바꿔 수요자에게 공급하는 방식. 일반적인 AC 송전에 비해 전력 손실을 대폭 줄일 수 있으며 대용량의 전기를 장거리로 보낼 수 있어 슈퍼그리드의 핵심 기술로 꼽힘

5. 산업용 로봇

- 세계 최대 산업용 로봇 시장으로 부상하였으나 중국 브랜드 비중은 1/4에 불과
- 중국의 산업용 로봇시장 규모는 2013년 이후 연평균 29.7% 성장하면서 세계 최대의 산업용 로봇 시장으로 부상(전 세계 판매의 36.2% 차지)
- 2017년 중국 산업용 로봇 판매는 전년대비 59% 증가한 약 137,900대로 유럽과 미국에서 판매된 수(112,400대)를 넘어섬
- 중국시장에서 외국 브랜드 산업용 로봇의 영향력은 강화된 반면 **중국 브랜드** 로봇의 점유율은 축소
- 중국 브랜드 로봇 판매는 34,700대로 전년대비 29% 증가하였으나 시장점유율은 26.8%로 전년대비 5.9%p 감소(외국브랜드 시장점유율 73.2%)
- 종류별로는 다관절 로봇이 9,1000여 대 판매되어 전년대비 66.6% 증가하였으며 용도별로는 이적재용 로봇이 63,000여 대 팔려 전년대비 57.5% 증가

<주요국 산업용 로봇 판매 추이>

(단위: 대, %)

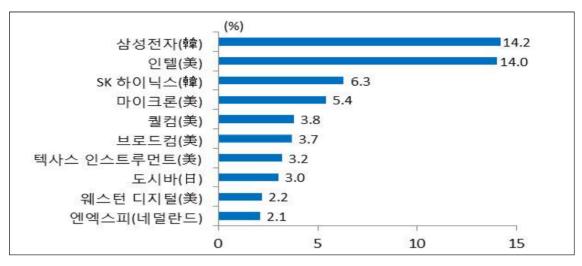
	2016	2017	2018*	2019*	2020*	2021*	·18년	CAGR	
	2010	2017	2010	2019	2020	2021	비중	성장률	(′19–′21)
미국	31,404	33,192	35,000	3,7500	41,000	46,000	8.3	5.0	10.0
중국	87,000	137,920	165,000	210,000	250,000	290,000	39.2	20.0	21.0
일본	38,586	45,566	54,000	56,000	59,000	64,000	12.8	19.0	6.0
한국	41,373	39,732	41,000	42,000	44,500	46,000	9.7	3.0	4.0
독일	20,074	21,404	22,500	23,500	25,000	26,000	5.3	5.0	5.0
기타	75,910	103,521	103,500	115,000	133,500	158,000	24.6	0.0	_
합계	294,347	381,335	421,000	484,000	553,000	630,000	100	0.0	_

자료: 국제로봇연맹(IFR)

■ 과감한 M&A로 기술경쟁력 강화하면서 빠르게 선두업체들을 추격

- 스쿠터 제조 스타트업인 나인봇이 2015년 세그웨이를 인수하였으며 가전기업 인 메이디는 2016년 세계 3대 로봇 업체인 독일의 쿠카(KUKA)를 인수
- 메이디는 인수합병을 통해 자동차에 치우쳐 있는 쿠카의 사업구조를 컴퓨터 · 통신 · 가전기기 분야까지 넓혔으며 2017년 2월에는 이스라엘 로봇 자동화 업체 인 서보트로닉스(Servotronix)도 인수하면서 경쟁력 강화
- 여전히 일본, 독일 등 **기술 선진국과의 기술격차가 크게 존재**하나 향후 중국 브랜드의 판매가 증가하면서 기술과 품질의 안정성도 증가할 것으로 전망
- 산업부와 광운대의 「2017년 로봇산업경쟁력조사」에 따르면 중국은 가격 외에 품질·제조·인적 자원 측면에서 일본·미국·독일 등에 크게 뒤처짐
- 한국은 품질·제조·인적 자원 측면에서 중국에 근소하게 앞섰으나 가격경쟁력에서 크게 떨어져 종합경쟁력은 중국에 뒤지는 것으로 나타남

<2017년 로봇 경쟁력 조사 (한국 100 기준)>


	일본	마	독일	중국
품질	118.56	111.23	118.89	94.42
제조	113.97	110.07	110.44	99.36
인력	116.17	112.30	112.7	96.75
가격	117.30	109.79	108.17	117.78
기술	117.49	116.20	115.94	97.63
종합	116.91	112.17	113.68	100.79

자료: 2017년 로봇산업 경쟁력 조사

6. 반도체

- 중국이 '반도체굴기'를 외치며 대규모 투자계획을 발표
- 중국이 1조위안(170조원)을 투자해 현재 15%인 반도체와 반도체장비 소재・부 품 자급률을 2025년까지 70%로 끌어올리겠다는 계획을 발표
- 중국정부는 2014년에 218억 달러 규모의 반도체 펀드를 조성해 2017년까지 70개 프로젝트에 투자
- 중국기업들도 반도체 투자에 합세하여 현재약 1조 위안 투자한 것으로 추정
- 시진핑 주석이 2018년 4월 '반도체 심장론'을 제시한 이후 대규모 펀드 조성 과 연구개발(R&D) 투자 계획 등이 발표
- 국가 집적회로사업 투자펀드는 3,000억위안(약 51조원) 규모의 반도체 산업 육성 펀드를 조성
- 텐센트와 알리바바는 반도체 연구개발투자 계획을 발표
- 대규모 투자에도 불구하고 낙후된 공정, 높은 원가, 부족한 인력 등으로 반도체 Big3(삼성, SK, 마이크론)와 여전히 3~5년 정도의 기술격차 존재
- 중국정부의 대규모 투자에도 불구하고 세계 반도체 매출 상위 10위권에 진입 한 중국 반도체 기업은 전무
- 2017년 기준, 전 세계 반도체 매출 1위 기업은 삼성전자(14.2%)이며 그 뒤로 이텔(14.0%). SK하이닉스(6.3%). 마이크론(5.4%). 퀠컥(3.8%) 순
- 2017년 기준 전세계 반도체 매출 상위 10개 기업 중 6개 기업이 미국 기업이며, 이들 기업이 세계 반도체 매출의 32.3%를 차지
- 1990년 세계 반도체 매출액의 절반에 육박했던 일본 반도체 기업들의 점유율은 2017년 7%로 큰 폭 하락

<2017년 전세계 반도체 매출 상위 10대 업체의 시장 점유율>

자료: 가트너

- 중국의 양쯔강메모리(YMTC)가 2018년 64단 3D 낸드 개발을 발표하였으나 기존 반도체 업계는 현재 92/96단을 양산하고 있어 큰 기술격차 존재
- YMTC가 2년 전 32단을 개발하였음에도 양산을 못하는 이유는 경쟁사 대비약 5배가 넘은 원가 때문으로 64단도 같은 이유로 양산이 지연될 것으로 전망
- YMTC는 총 인력이 3,000명 수준으로 경쟁사대비 높은 생산성을 확보할 수 없음
- * 삼성의 인력은 총 38,000명, SK는 25,000명 수준

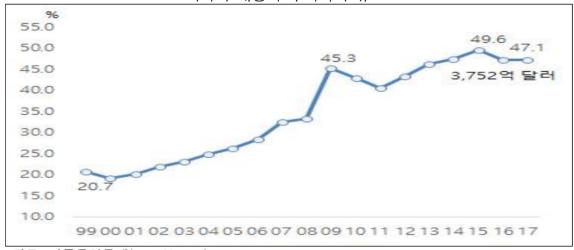
<업체별 3D 낸드 양산시점 추이>

자료: 삼성증권

- 미국의 견제로 중국의 반도체 기술습득 시간은 다소 지연될 것으로 예상
- 중국은 M&A를 통해 선진기술을 습득하여 기술격차를 줄이려고 하나 미국 등 서방국가들의 견제로 인수가 좌절
- 2015년 칭화유니그룹이 마이크론 메모리반도체 부분을 230억 달러에 인수하려 했으나 무산되는 등 미국 등 서방국가들의 견제가 심화
- 2018년 7월 칭화유니 그룹이 프랑스 스마트칩 부품 메이커 랑셍을 인수하는 등 중국 반도체 기업의 해외기업 인수는 지속적으로 추진될 것으로 보이나 서방국가들의 견제로 중국반도체 기업의 추격은 다소 지연될 전망

<미국에 의해 좌절된 중국의 반도체 기업 인수 시도>

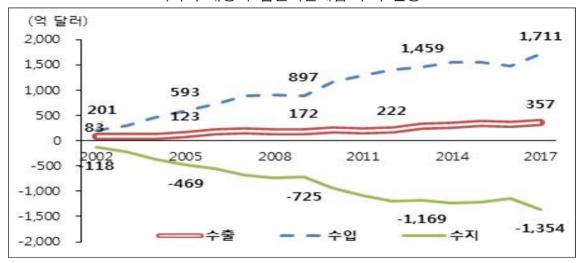
중국기업	피인수 기업	시기	제 안액(달러)
칭화유니그룹	마이크론(메모리반도체)	2015년 7월	230억
화룬그룹	페이차이들반드체(전력용반도체)	2015년 12월	26억
고스케일캐피털	네덜란드 루미에즈(조명반도체)	2015년 3월	33억
	웨스턴디지털(저장장치)	2015년 9월	37억(15% 지분)
푸젠그랜드칩펀드	독일 엑시트론(반도체장비)	2016년 5월	7.5억
캐넌브리지펀드	래티스반도체(프로그래머블 반도체)	2017년 9월	13억


자료: 매일경제

VI. 중국제조 2025와 미·중 무역분쟁

1. 첨단 기술제품 분야 대중 무역적자 지속

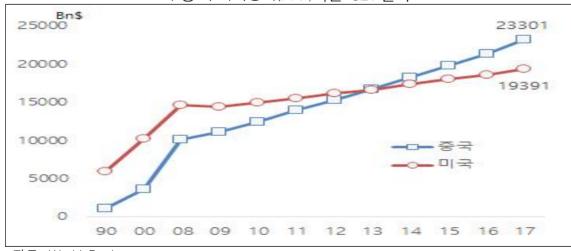
- 중국의 불공정 무역에 따른 미국의 **대중국 적자는 지속적으로 증가**
- 2017년 미국의 전체 무역적자 7,962억 달러 중 대중국 무역적자는 3,752억 달러 를 기록하며 47.1%를 차지 (전년대비 8.1% 증가)



자료: 미국무역통계(www.kita.net)

- 첨단 기술제품 분야에서 미국의 대중 무역 적자규모는 지속적으로 증가
- 2017년 현재 미국의 첨단 기술제품의 대중 무역적자 규모는 1,354억 달러로 첨단 기술제품 전체 적자 규모의 1.2배에 달함
- 정보통신분야의 대중 적자는 2017년 기준 1.510억 달러 적자를 기록
- * 대중 정보통신 수입(백만달러): ('02)16,582 → ('10)102,292 → ('17)155.535
- * 대중 정보통신 수지(백만달러): ('02)-14,726 → ('10)-98,251 → ('17)-151,024

<미국의 대중국 첨단기술제품 무역 현황 >



자료: Census Bureau

2. 중국경제의 부상과 기술굴기

- 중국의 명목 GDP규모가 미국의 약 60%에 도달했으며 구매력평가(PPP) 기준으로는 미국을 추월
- 2014년 구매력평가(PPP) 기준 중국의 GDP규모가 미국을 추월 (World Bank)
- 현재 경제추세라면(미국 2%, 중국 6% 성장시) 2030년경 중국 명목 GDP 미국 추월할 것으로 전망

<미·중 구매력평가(PPP)기준 GDP변화 >

자료: World Bank

- ICT 등 첨단기술 분야에서 미·중간 기술격차가 2015년 2.1년에서 2017년 1.3년 으로 빠르게 축소
- 특히 5G 등 이동정보통신 분야의 미·중가 기술격차는 0.5년으로 중국은 이미 선진국수준에 진입
- 중국이 5G 준비과정에서 가장 앞서나가고 있으며 최근까지 5G NR(단말과 기지국 사이 무선전송 기술) 분야에 신고된 5.124개 특허 중 화웨이가 낸 특허 (1.481개)가 가장 많음
- 화웨이는 최근 인텔과 함께 2.6GHz 대역에서 SA(Stand Alone) 아키텍처 기반 5G 통신 '퍼스트콜(First Call)'에 세계 최초로 성공

미·중간 기술격차('17)

자료: 정보통신기술진흥센터

3. 미·중간 첨단기술 패권 전쟁

- 미·중간 무역분쟁의 핵심은 첨단기술에 대한 패권 다툼
- 향후 21세기 글로벌 패권의 향방은 첨단기술력에 달려있으며 특히 디지털 경제와 국가안보의 토대가 되는 반도체의 중요성이 증가
- 반도체 칩은 자동차에서부터 세탁기, 스마트폰, 전투기에 걸쳐 모든 분야에 들어가는 핵심 기술로서 글로벌 산업 성장을 견인
- 하나의 반도체 기업의 16,000개의 공급업체를 보유하고 있으며 자동차, 스마 트폰 등 수 천개의 제품에 필요한 부품으로 첨단기술의 핵심
- 중국의 기술패권 선언으로 미·중간 기술패권 다툼 시작
- 2014년 중국은 『국가 반도체 산업 발전 추진 계획』을 발표하고 1,390억 위안 (약 23조5000억원) 규모의 반도체 펀드를 조성하여 70여 개 프로젝트에 투자
- 2018년 5월 월스트리트저널(WSJ)은 중국이 반도체 산업을 육성하기 위해 조만 간 3,000억 위안(약 51조원) 규모의 펀드를 조성할 계획이라고 보도
- 반도체는 중국정부가 발표한 국가발전계획인 '중국제조 2025'의 핵심 분야
- 2015년 5월 18일, 중국은 제조강국으로 나아가기 위한 산업고도화 전략인 '중 국제조 2025'를 추진
- '중국제조 2025'는 10대 전략산업 육성을 통해 2045년 미국 수준의 첨단 제조강국으로 진입하기 위한 중국의 산업고도화 전략
- * 10대 전략 산업: 차세대 정보기술(IT), 우주항공, 해양공학, 선박·철도 교통, 신에너지, 로봇, 전력설비, 바이오의약, 농업기계설비, 신소재 등이 포함
- 연간 2,000억달러가 넘는 반도체 수입액을 줄이고, 2025년까지 반도체 자급률 70%를 달성하여 반도체 기술 독립하겠다는 것이 중국제조 2025의 핵심
 - * 2017년 기준, 중국의 반도체 수입액은 2,596억 달러로 전체의 약 14.5%를 차지하고 있으며 무역적자 규모는 이며 무역적자는 1,929억 달러

중국의 반도체 수입 및 적자규모

주: HS 코드 8542 기준

자료: kita.net, 중국해관총서

VII. 향후 전망 및 대응 방안

1. 향후 전망

- 중국은 무역분쟁 해소를 위해 「**중국제조 2025」전략을 수정**할 전망
- 월스트리트저널(WSJ)은 중국의 최고 정책 입안 기관과 고위 정책 당국자들이 '중국제조 2025' 수정안을 준비 중이라고 보도
- 2018년 12월 미·중 정상회담 이후 중국정부가 지방정부에 제공한 정책 가이 드라인에서 '중국제조 2025' 전략이 삭제
- 중국은 '중국제조 2025' 가운데 일부의 달성 목표 시한을 당초 2025년에서 2035년으로 미루는 방안을 검토
- 그러나, 중국제조 2025는 단순한 산업고도화 전략이 아닌 중국몽(中國夢)의 핵심 추동력으로 목표달성을 위해 **수정・보완되면서 지속 추진**될 전망
- 다만, 중국정부의 목표 연기와 미국 등 서방국가들의 견제로 반도체 등 첨단산 업 분야의 목표 달성은 다소 지연이 불가피 할 것
- 중국제조 2025는 다른 국가들에게 위협이자 기회를 동시에 제공
- '중국제조 2025'는 제조업의 자급률 제고를 통한 수입대체화를 추진하므로 대중국 수출의존도가 높은 한국 등 기존 제조국가들에게 위협요인으로 작용
- 독일의 싱크탱크인 MERICS는 한국이 중국제조 2025로 인해 가장 피해가 클 것이라고 분석
- '중국제조 2025'가 특정 산업에 투자와 지원을 집중함으로써 태양광 산업과 같이 공급과잉 → 가격하락 → 시장교란 등으로 이어질 가능성이 높음
 - * 미국은 과거 태양광 산업을 석권하였으나 중국의 태양광산업 육성정책으로 중국 태양광 기업들이 난립하고 패널가격이 폭락하면서 수많은 미국 기업들이 파산

- '중국제조 2025' 신성장 산업을 중심으로 새로운 시장 수요와 비즈니스 기회를 를 창출하는 등 기회요인도 상존
- 차세대 정보기술, 신에너지 자동차, 고성능 공작기계, 로봇 등을 육성하기 위해 서는 방대한 ICT 분야의 소프트웨어와 장비가 필요
- 중국의 산업구조 고도화로 인하여 **글로벌밸류체인(GVC)의 변화**가 발생
- '중국제조 2025'를 통해 중국이 고부가가치 중간재 생산과 수출이 가능하게 될 경우 글로벌밸류체인(GVC)의 변화가 발생
- 한・중・일 중심의 역내 분업구조가 베트남, 인도네시아 등으로 인도・아세 안 지역으로 확장되면서 GVC의 재편이 가속화될 전망

2. 대응방안

- 첫째, 연구개발(R&D)투자와 인재영입을 통한 기술혁신 능력 제고
- '중국제조 2025'의 10대 산업과 우리의 신성장산업 육성분야가 거의 유사해 중국의 경쟁력이 강화됨에 따라 한・중간의 경쟁이 더욱 치열해질 전망
- 로봇, 차세대 정보기술(5G, AI, 빅데이터) 등 우리의 19개 미래성장동력 산업과 중국제조 2025가 중복되는 업종이 12개, 유사업종은 6개인 것으로 파악
- 미·중 무역분쟁으로 중국의 기술습득이 지연되는 틈을 활용해 신성장 산업 등에 대한 **과감한 연구개발(R&D)투자로 중국과의 기술격차를 확대**해야 함
- 핵심기술을 확보하기 위해서는 연구개발(R&D)을 수행할 인재영입도 중요
- 4차산업시대 새로운 성장동력은 특급 인재의 확보이며, 특히 글로벌 인재를 영입하기 위해서는 비자혜택 등 과감한 규제완화가 필요

■ 둘째, 인재 유출방지에 대한 대응 강화

- 미국 일본 등 기술 선진국은 반도체・디스플레이 등 자국 핵심 산업에 대한 기술 유출을 엄격히 감시하고 인력 빼내기에 대해 강력하게 법적으로 단속
- 정부차원에서 기술인력 유출 근절을 위해 전직금지 약정의 법적 근거를 명확 히 하는 등의 노력이 필요
 - * 미국은 1996년 경제스파이방지법을 제정하여 국가 전략기술을 해외에 유출하면 영업비밀 절도죄가 아니라 '간첩죄'로 가중 처벌하며 법정 최고형은 징역 20년형, 추징금은 최대 500만달러(약 56억4000만원)에 이름
- 기업차원에서는 우수 인력에 대한 정년폐지 등 적극적인 인력 지원방안을 검토해야 할 것임
 - * SK 하이닉스는 2018년 12월, 기술력이 높은 우수 엔지니어에 대해 정년(만 60세)에 관계없이 일할 수 있는 제도를 마련

■ 셋째, 인수합병(M&A)을 통한 첨단기술 유출방지 강화

- 인수·합병(M&A)을 통한 첨단기술 유출 방지를 위해 해외 인수·합병(M&A)에 대한 사전 승인제도를 더욱 강화
 - * 2018년 3월 반도체업계 싱가포르 브로드컴의 미국 퀄컴 인수 시도가 5G 핵심기술 유출을 우려한 미국 외국인투자심의위원회(CFIUS)의 반대 권고에 최종 무산
- 2018년 1월 3일 정부는 산업기술 유출 근절대책을 발표하여 국가핵심기술을 보유한 기업을 외국기업이 M&A할 경우 사전승인 또는 신고하도록 개정
 - * 지금까지는 국가 연구·개발(R&D) 지원을 받아 개발한 국가핵심기술을 보유한 국내 기업을 외국기업이 M&A하는 경우 신고만 하면 됐지만 앞으로는 정부의 사전 승인 을 받아야 하며, 국가 R&D 지원을 받지 않은 기업은 신고해야 함
- 그러나 국가핵심기술의 범위와 국가 R&D 지원을 받지 않은 민간기업의 기술 유출 우려가 있어 더욱 강화해야할 필요가 있음

■ 넷째, 국제공조를 통해 중국의 불공정 거래 견제

- 중국의 불공정한 관행을 WTO에 지속적으로 제소하는 등 국제공조를 통해 중국의 불공정 행위를 근절하고 견제해야 함
- 중국은 중국제조 2025의 성과를 확대하기 위해 관련 기업에 대한 보조금 지급, 외자기업에 대한 강제 기술이전 요구, 정부주도의 해외기업 인수 등 불공정한 관행으로 실행하고 있으며 이는 미·중 무역분쟁의 주요 원인으로 작용
- 미국 등 관련 국가들과 국제공조를 통해 중국정부의 불공정 행위를 모니터링하고, WTO 제소 등을 통해 불공정 행위에 대한 근절 압력을 지속해야 함
- 첨단제품의 보안성을 보장하는 적절한 테스팅 절차 등을 국제표준으로 제정하여 향후 중국산 제품에 의한 정보유출을 방지하는 조치 시행
 - 사이버 해킹에 대응할 수 있는 정보보안의 중요성을 알리는 캠페인을 추진함과 동시에 정보유출 방지를 위한 테이터 핸들링 표준제정에 적극 참여

- 다섯째, '중국제조 2025' 추진과정의 시장수요와 비즈니스 기회를 활용
- 중국이 10대 산업을 육성하기 위해서 필요한 ICT 분야의 소프트웨어와 장비 등 새로운 시장수요를 충족시킬 중간재 공급에 역점을 두어 중국시장 공략
- 미·중 무역분쟁이 장기화 되면서 미국이 중국제조 2025 관련 제품의 대중국 수출을 금지시킴으로써 관련제품의 대중국 수출이 증가할 가능성도 있음
- 미국이 대북·대이란 제재위반을 이유로 ZTE에 대한 수출금지 조치를 내리자 ZTE의 점유율이 크게 감소한 반면 삼성의 시장점유율은 크게 확대
 - * 미국은 최근 중국 D램 제조사 푸젠진화반도체(JHICC)의 메모리 칩 능력이 미 군사 시스템용 칩 공급업체에 심대한 위협이 된다고 판단, 푸젠진화반도체를 대상으로 한 자국 기업의 부품과 소프트웨어 수출을 금지
- 10대 핵심산업의 기술수준의 편차가 존재하므로 **업종별, 기술 수준별 차별화된** 대응전략 마련 필요
- 중국과의 기술협력을 확대하여 인공지능(AI), 사물인터넷(IoT) 등 첨단산업 분야에서 기술표준을 마련하고 신흥시장에 공동 진출
- 여섯째, 중국 산업구조 고도화에 따른 중국의 중간재 경쟁력 강화와 중국정부 의 견제 등 차이나 리스크에 대비한 시장 다변화 추진
- 중국의 기술경쟁력 상승으로 수입대체화가 가속화될 가능성이 높아 **아세안** 등 신흥시장 개척을 통해 리스크를 축소할 필요성 대두
- 최근 반도체 기업에 대하여 가격담합을 이유로 반독점 조사에 착수하는 등 우리기업에 대한 견제를 점진적으로 강화하고 있음