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Introduction

Weather events are a major source of crop production risk exposure. One method of 

hedging this risk exposure in the U.S. has been through the use of federal crop 

insurance. However, crop insurance indemnities are determined based on yield shortfall, 

which may or may not be actually caused by natural disasters. As a consequence, the 

crop insurance market suffers from costly asymmetric information problems: adverse 

selection, moral hazard, and verifiability (Hyde and Vercammen, 1997; Skees and Reed, 

1986). In addition, the failure of crop insurance markets is closely related to the 

existence of systemic weather risk which stems from spatially correlated adverse weather 

events (Xu, et al., 2009; Woodard and Garcia, 2008). Miranda and Glauber (1997) argue 

that without government subsidies or reinsurance crop insurers would have to pass the 

cost of bearing the systemic risk through to farmers. One might conclude that 

government subsidies are a substitute for hedging the underlying weather risk.

As a result, the government subsidizes a high proportion of the costs of crop 

insurance for participating farmers and private crop insurance companies. Farmers pay 
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only 33-62% of the total premium, depending on the coverage level, and the federal 

government pays the rest of the premium. Insurance company losses are reinsured by the 

USDA and their administrative and operating expenses are reimbursed by the federal 

government. During fiscal 2008-2010, the cost of the government premium subsidy for 

farmers averaged $5.06 billion (92% of the average total government cost). The next 

largest component was reimbursement of administrative and operating expenses to 

private insurance companies (Shields, 2010, p. 11). Under the conditions of the Standard 

Reinsurance Agreement participating insurance companies retain only about 20% of the 

business in their assigned (high) risk funds and the federal government assumes the 

balance of the high risk portfolio (Shields, 2010, p. 12). The risk exposure in these 

funds represents an important part of the social costs of the federal crop insurance 

program. In effect the social cost includes the explicit and implicit costs that exist in the 

federal crop insurance program including the government subsidies and the government’s 

unhedged risk exposure. 

Weather derivatives such as futures and options contracts, based on temperature and 

precipitation, have been suggested as a potential risk management tool. In contrast with 

crop insurance, the problems of asymmetric information do not exist in the weather 

derivatives market because weather derivatives insure against the weather events causing 

damage, not the damage itself. Systematic weather risk over larger geographic areas may 

also be effectively hedged using weather derivatives, which could reduce the need for 

government subsidies (Woodard and Garcia, 2008). If the purpose is to reduce the social 

cost of weather risk management, the public policy question is: who should use weather 

derivatives - the farmer, the insurance company, or the government? 

Previous studies have focused on weather options pricing because there is no agreed 

pricing mechanism for the options underlying nonstorable and nontradable assets such as 

weather indices (Huang, et al., 2008; Odening, et al., 2007; Cao and Wei, 2004; 

Richards, et al., 2004; Yoo, 2003). In this regard, simulation methods have been widely 

used to price weather derivatives, as a generalized closed-form pricing mechanism has 

yet to be developed. Those studies also show that hedging effectiveness exists when 

using weather derivatives, yet the efficacy of weather derivatives in limited when 
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hedging farm-level agricultural exposures and geographic basis risk is a primary concern 

(Woodard and Garcia, 2007, 2008; Odening, et al., 2007). Basis risk is generally defined 

as the hedging gap between the payoffs of a given hedging instrument and shortfalls in 

the underlying exposure, and geographic basis risk originates from the distance between 

the weather station for weather derivatives and the exposure location.

It remains unclear what role weather derivatives will play in agriculture. One reason 

for this uncertainty is the continuing popularity of crop insurance. That popularity is due 

significantly to the fact that the federal government subsidizes insurance premiums to 

keep farm premium rates low and to maintain private crop insurance companies with 

adequate reserves in case of widespread crop disasters. Yet, the rising cost of the federal 

crop insurance program has been an incentive for the government to seek alternative 

ways to reduce that cost. To address that policy dilemma, we compare weather 

derivatives to crop insurance as a potential risk management tool. Unlike previous 

studies, which compare weather derivatives to the no hedge alternative, several risk 

indicators are compared for alternative hedging tools using historical farm-level and 

county-level soybean yield data. No previous study has compared hedging cost and 

effectiveness directly between weather options and crop insurance. Based on comparisons 

of hedging effectiveness we find that the social cost of the federal crop insurance 

program could be reduced by selective use of weather options. 

Conceptual Framework

To analyze the hedging cost of weather options for crop agriculture we integrate three 

models - a yield response model, a temperature process model, and a precipitation 

process model. The estimated yield response model identifies the weather-yield relation-

ship and determines the optimal tick value (the indemnity payment per unit of adverse 

weather event) and the optimal hedging ratio of weather options as an efficient hedging 

instrument. Linear, quadratic, and Cobb-Douglas yield response functions are considered 
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to estimate soybean yields on rainfall and temperature variables by OLS and to choose 

the model which fits the weather relationship best. Although there are many other 

factors that potentially influence yields, if they are uncorrelated with weather variables 

relatively simple models will provide reliable estimates of the weather-yield relationship 

(Richards, et al., 2004).

Soybean is used in this analysis, as soybean yield data is both nonstationary and 

highly variable, which makes it a good test of the approach. The data series is detrended 

to correct for the general upward trend in yields before analyzing the impact of weather 

on yield. Following Turvey’s (2001) yield response model, we use cumulative daily 

rainfall and temperature for growing season from June to August instead of monthly or 

shorter time intervals. There are two reasons for this. First, month-to-month temperatures 

are typically auto-correlated. Second, using multiple derivative contracts based on 

monthly weather indices increases the probability of over fitting the hedging parameters 

and may diminish the accuracy of the hedging estimates (Woodard and Garcia, 2007).

Temperature Model

Weather derivatives are evaluated mostly based on daily simulation of underlying 

weather processes, so an appropriate weather process model needs to be determined. 

Temperature variables tend to generate abnormal variations or irregular jumps due to 

unexpected weather events, and then they revert back to some long-run average level. 

We construct our temperature process model using mean-reverting Brownian motion with 

log-normal jumps and seasonal volatility (Richards, et al., 2004; Yoo, 2003).

The change of average daily temperature (Tt) is not entirely deterministic and it is 

assumed to follow a Brownian motion process

dTt = μdt + σdz       (1)

where μ is the drift rate per unit of time (dt), σ is the standard deviation of the process, 

and dz is an increment of a standard Weiner process with zero mean and variance of dt. 
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The process in (1) is rewritten by including a mean-reversion term as

dTt = κ(Tt
m

– Tt)dt + σdz (2)

where κ is the rate of mean reversion, and Tt
m
 is the instantaneous mean of the process. 

Tt
m
 is set up to accommodate seasonality, auto-regression, and time trend as in (3),
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where t is the time variable, measured in days, and the γ terms are parameters. We let 

t denote January 1, January 2, etc. Since we know that the period of the oscillations is 

one year (neglecting leap years) we have (2πt / 365). In addition, the optimal lag is 

found to be p = 3 by the Bayesian Information Criterion.

To address the unexpected discrete jumps we assume that discrete jumps occur 

according to a Poisson process q with average arrival rate λ and a random percentage 

shock φ. The random shock is assumed to be distributed as ln(φ)~N(θ, δ
2
), where θ is 

the mean jump size and δ
2 is the variance of the jump (Jorion, 1988). The Poisson 

process is distributed as dq = 0 with probability 1 – λdt and 1 with probability λdt. 

Combining this with (1) - (3), the stochastic differential equation for the temperature 

process accommodating mean reversion and jump diffusion is

dTt = (κ(Tt
m

– Tt) – λθ)dt + σdz + φdq  (4)

The parameters (κ, σ, λ, θ, δ) of the weather process model in (4) are derived by 

maximum likelihood estimation.

Precipitation Model

A combination of a Markov chain and a gamma distribution function has been 
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recognized as a simple and effective approach in generating daily precipitation data for 

many environments (Geng, et al., 1986; Richardson and Wright, 1984). The stochastic 

process of daily precipitation can be decomposed into the binary event (Xt) “rainfall” and 

“dryness,” respectively, and a gamma distribution for the amount of precipitation (Yt) for 

rainy days. Thus, the amount of precipitation falling on a date t is assumed to be a 

random variable, Rt = Xt⋅Yt. 

The first part of the process is Xt = 0 if day t is dry, or Xt = 1 if day t is rainy. If 

we assume that Xt follows a first-order Markov process, then the probability of rainfall 

occurrence at day t (Pt) can be written as

Pt = Pt-1⋅Pt(W/W) + (1 - Pt-1)⋅Pt(W/D), for t = 1, 2, …, n (5)

where Pt(W/W) is the transition probability from rainfall at day t-1 to rainfall at day t, 

and Pt(W/D) is the transition probability from dryness at day t-1 to rainfall at day t.

The second part of the precipitation process is a nonnegative distribution for the 

amount of precipitation (Yt) for rainy days. Yt is assumed to be a stochastically indepen-

dent sequence of random variables having a gamma distribution whose probability 

density is given by
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where α and β are distribution parameters, and Γ(α) is the gamma function of α. 

Since it is known that the rainfall pattern depends on the seasonality in a year, a 

Markov chain can best be applied for each month separately (Geng, et al., 1986). The 

estimation of the transitional probabilities Pt(W/W) and Pt(W/D) are obtained directly 

from the historical daily rainfall assuming that the homogeneity condition holds for 

rainfall within a month and we have at least twenty years of data (Richardson and 

Wright, 1984). The gamma distribution parameters α and β are derived by maximum 

likelihood estimation.
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Methodology

The empirical analysis is comprised of estimating the yield response model to 

determine the optimal hedging ratio of weather options, pricing the weather options to 

determine the cost of hedging, and evaluating the hedging effectiveness as measured by 

several risk indicators: certainty equivalent, risk premium, Sharpe ratio, and value-at-risk.

Data

Weather data is obtained from the Minnesota Climatology Working Group. In order to 

analyze a cross-section of the southern Minnesota region, we use weather data from four 

dispersed measurement stations, Luverne, Morris, Preston, and Rush City which map into 

the southwest, northwest, southeast, and northeast points of the region. For each location 

(L), daily high temperature (MaxTt
L), daily low temperature (MinTt

L), and daily precipi-

tation (prectL), are obtained for the period from September 1, 1940 to August 31, 2008 

(t = 1 to 24,837).

For the temperature-based weather call/put option, the standard measure of growing- 

degree-day (GDD) for a particular day is calculated as

50
2
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GDD tt

t
−

+
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The growing degree day restricts the low temperature (floor) at 50 degrees Fahrenheit 

(temperature below which no growth occurs) and the high temperature (cap) at 86 

degrees (temperature above which benefits of an additional degree are minimal). 

Precipitation is measured in inches. Both temperature and precipitation data are the 

cumulative daily measures during June-August.

Both county-level and farm-level crop yield data are used to observe the effects of 

spatial aggregation on hedging effectiveness. County-level and farm-level soybean yields 
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(per planted acre) are obtained from the National Agricultural Statistics Service (NASS) 

and Risk Management Agency (RMA), respectively, for the four selected counties 

(towns): Rock County (Luverne), Stevens County (Morris), Fillmore County (Preston), 

and Chisago County (Rush City). NASS provides the county-level yields for 68 growing 

seasons from 1941-2007. NASS provides the county-level yields per planted acre from 

1972 onward, while they provide the county-level yields per harvested acre from 1941 

onward. We calibrate the yields per planted acre before 1972 based on the yields per 

harvested acre. The farm-level yields are provided by RMA for 23 growing seasons 

from 1984-2006. We select 24 representative farms reporting at least 17 years out of 23 

years to evaluate the crop insurance and weather options at the farm level.

Valuation of Weather Options and Crop Insurance

Valuation of the weather option premium is carried out by daily simulation. The 

option value is calculated by averaging the discounted payoffs of the option over 10,000 

weather values by Monte Carlo simulation based on the estimated parameters in the 

weather process models. The advantages of daily simulation are to produce more 

accurate results based on a considerably large number of simulated values and to 

incorporate possible weather forecasts (such as mean reversion or extreme events) into 

the pricing model.

A risk-neutral valuation method is used which discounts the payoffs of the options at 

expiration by the risk-free rate under the assumption that the market price of weather 

risk is zero. If there is no correlation between the weather index and an aggregate 

market index, then the market price of weather risk must be zero (Hull, 2006). To 

observe the correlation we use the annual personal income data (to represent the aggre-

gate market index) and annualized GDD and precipitation residuals for each of the four 

counties. There is a statistically significant correlation between personal income and 

weather series residuals for only Chisago County. Odening, et al. (2007) also shows that 

there is no (or negligible) correlation between rainfall indexes and stock market returns 

for the precipitation option. In addition Turvey (2005) argues that the market price of 
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risk should be zero in equilibrium because of spatial arbitrage.

To compare with the hedging cost and effectiveness of weather options, two crop 

insurance plans, multiple peril crop insurance (MPCI) and the group risk plan (GRP) are 

considered because both plans protect individual farmers against production risk caused 

by adverse weather. MPCI provides farmers with farm-level indemnities while GRP 

insures farmers at the county level. Crop insurance premiums are obtained from the crop 

insurance calculator based on farm location, actual production history (APH), and 

coverage levels (University of Illinois). We calculate the MPCI premium for each of the 

four counties as an average of MPCI premiums of the 24 representative farmers for each 

county while the GRP premiums are same for all farmers in the same county.

There is no hedging instrument which provides 100 percent coverage to farmers. 

MPCI insures each farmer’s crop from 50 to 85 percent of his or her APH yield while 

GRP insures each farmer’s crop from 70 to 90 percent of his or her county APH yield. 

Yet, weather derivatives induce a hedging gap, caused by the imperfect relationship 

between crop yield and weather variables. Therefore, we calculate the weighted hedging 

costs for MPCI, GRP, and weather options by adjusting each cost by the corresponding 

coverage ratio in order to compare the hedging cost at the same coverage level.

Hedging Effectiveness

Using a stochastic expected utility framework, the hedging effectiveness of weather 

options is evaluated by comparing several simulated risk indicators: certainty equivalent 

(CE), risk premium (RP), Sharpe ratio (SR), and value-at-risk (VaR) among alternative 

hedging strategies. The farmer’s expected negative exponential utility function is speci-

fied as E[U(π)] = E[-exp(-γπ)]. Here exp(⋅) is an exponential function, γ is the degree 

of risk aversion, and π is the profit. The advantage of this utility function is that the 

degree of concavity (γ) is independent of profit (π). This implies that the utility function 

shows constant absolute risk aversion for γ > 0, regardless of the profit or loss level. 

The certainty equivalent (CE) and risk premium (RP) are measured based on the 

negative exponential utility function.



- 237 -

Profit is calculated as crop revenue less total production cost per planted acre, where 

crop revenue is the product of uncertain yield and price. Uncertain crop yields are 

simulated based on the estimated yield response model and simulated weather processes 

with the assumption of a normally distributed error term in the yield response model. 

Crop price is taken from maximum price elections set by the RMA every year (Univer-

sity of Illinois). Total production cost is estimated based on county-level yields and costs 

using the FINBIN farm financial database (Center for Farm Financial Management). 

Payoffs and costs of hedging instruments are included in crop revenues and production 

costs, respectively.

The certainty equivalent (CE) value is obtained by solving the expected negative 

exponential utility function for π, which becomes CE(π) = (1 / γ) ln E[U(π)]. The risk 

premium (RP) equals E(π) – CE(π). The CE and RP measures have been used in the 

traditional expected utility model by assuming the decision maker is an expected utility 

maximizer with a Bernoulli utility function. A shortcoming of this approach is that the 

value is subject to the choice of utility function and the assumption of risk attitude of 

the agent. However, this does not pose a particular problem, as the same utility function 

and the same degree of risk aversion are assumed for both crop insurance and the 

weather option hedge. The Sharpe ratio (SR) is defined as {E(R)-Rf}/σ(R). Here E(R) is 

the expected rate of return from the crop production, Rf is the risk-free rate of return 

(0.05 in this study), and σ(R) is the standard deviation of the crop production returns. 

The value-at-risk (VaR) is measured using Monte Carlo simulation at the 90% confi-

dence level.

Geographic Basis Risk and Spatial Aggregation

Weather options are priced using the weather process at each of the four locations, 

assuming the existence of an over-the-counter (OTC) weather option contract for the 

weather index at each location. However, OTC weather options based on each specific 

location are not traded due to liquidity and fair pricing problems. The Chicago Mer-

cantile Exchange (CME) offers weather options and futures for several major inter-
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national cities. Thus, geographic basis risk may arise when we use the CME options 

instead of OTC options. To measure the geographic basis risk for each county, we 

compare the hedging effectiveness of CME options (based on the Minneapolis weather 

index) with OTC options (based on each local weather index) because there is no 

geographic basis risk in using the OTC options.

Woodard and Garcia (2007) show that the use of spatial aggregation diminishes the 

degree to which geographic basis risk impedes effective hedging. We also observe the 

improvement of hedging effectiveness by using weather options as the level of 

aggregation increases (from the farm level, to the county level, to the four-county level).

Results

Three alternative yield response models are estimated: linear, quadratic, and Cobb- 

Douglas. The quadratic yield response model fits the relationship between crop yield and 

the two weather variables best (Table 1). Since the four selected counties show similar 

results to one another for some of the model estimating stage, we report the empirical 

results for two representative locations (Luverne and Preston) to illustrate variations in 

the data. Full results for all tables are available from the authors upon request. There are 

two distinguishing characteristics of the estimated quadratic function. First, large 

deviations (in either direction) from the historical mean precipitation and temperature 

tend to depress yields. Second, a higher than average yield level is predicted to optimize 

the yield response function. 
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Table 1. Quadratic Yield Response Model for Soybean

Yt = β0 + β1Rt + β2Gt + β3Rt
2 + β4Gt

2 + εt

Yt is the detrended crop yield (bushels per planted acre), Rt is the deviation of the cumulative daily 

rainfall for growing season (June to August), and Gt is the deviation of the cumulative daily 

growing-degree-day (GDD) for growing season.

Location
Coefficient

F R
2

S.E. Obs.
β0(S.E.) β1(S.E.) β2(S.E.) β3(S.E.) β4(S.E.)

Luverne
1.99

**

(0.67)

0.33
**

(0.15)

0.01

(0.00)

-0.15
**

(0.02)

0.00

(0.00)
12.26

**
0.44 4.12 68

Preston
1.39

*

(0.80)

0.32
**

(0.12)

0.01
**

(0.00)

-0.05
**

(0.02)

-0.00

(0.00)
 4.49

**
0.22 4.28 68

** Significant at 5% level   * Significant at 10% level

Based on the estimated quadratic function, we select a strangle hedging strategy which 

involves buying a put option and a call option with different strike levels on the 

underlying precipitation and GDD variables in order to provide the buyer of the option 

(the farmer) with protection from extreme weather events in either direction. The optimal 

strike and tick values of the options are also determined based on the estimated 

parameters. For example, the optimal strike level (Rt
*
) for the precipitation option in the

quadratic function is obtained by solving, 0)(βββ 2*
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Table 2. Temperature Process Model Parameters for Daily Low Temperature

dTt = (κ(Tt
m

– Tt) – λθ)dt + σdz + φdq

Parameters κ, λ, θ, δ
2
, σ

2
 represent the rate of mean reversion, average arrival rate, mean jump size, 

variance of the jump, and variance of the Brownian motion process, respectively. Subscript “s” and 

“w” stand for summer and winter, respectively. 

Parameter
Luverne Preston

Estimate S.E. Estimate S.E.

κ 0.12
**

0.00 0.10
**

0.00

κs 0.16
**

0.00 0.14
**

0.00

κw 0.10
**

0.00 0.09
**

0.00
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Parameter
Luverne Preston

Estimate S.E. Estimate S.E.

λ 0.08
**

0.02 0.46
**

0.07

λs 0.01 0.01 0.19
**

0.07

λw 0.33
**

0.11 0.44
**

0.16

θ -0.33
**

0.07 -0.80
**

0.08

θs -0.19
*

0.10 -0.57
**

0.12

θw -0.55
**

0.16 -0.63
**

0.19

δ
2

3.72
**

0.06 4.00
**

0.07

δs
2

2.68
**

0.08 2.88
**

0.09

δw
2

4.38
**

0.13 4.82
**

0.15

σ
2

3.88
**

0.03 4.73
**

0.04

σs
2

3.04
**

0.05 3.70
**

0.06

σw
2

4.70
**

0.08 5.79
**

0.10

** Significant at 5% level   * Significant at 10% level

Option prices by the daily simulation method are calculated over 10,000 simulated 

weather processes using the estimated parameters. Most of the parameters of the daily 

low temperature process model reported in Table 2 are significant at the 5% level. These 

estimated parameters explain reasonably well the seasonal temperature process in 

southern Minnesota where the standard deviation of winter temperature during Decem-

ber-February is about twice as large as that of summer temperature during June-August. 

The average arrival rate (λ), the variance of the jump (δ
2
), and the variance of the 

process (σ2) are much larger in winter than in summer. The rate of mean reversion (κ) 

is higher in summer compared to winter, which implies that irregular jumps in summer 

tend to more quickly revert to the mean. This also supports a smaller standard deviation 

for the summer temperature. The result of the daily high temperature process model is 

not reported since it similar to the daily low temperature model. The GDD processes are 

simulated based on the estimated parameters of the daily low and high temperature 

process models.
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Table 3. Precipitation Process Model Parameters

Pt = Pt-1⋅Pt(W/W)+(1 - Pt-1)⋅Pt(W/D), for t = 1, 2, …, n

0βα,,    ,
)α(β

)β/exp(
)1|(

α

1α

>

Γ

−
==

−

t

tt

tt
 Y

YY
XYf

Pt, Pt(W/W), and Pt(W/D) represent the probability of rainfall occurrence at day t, the transition 

probability from rainfall at day t-1 to rainfall at day t, and the transition probability from dryness at 

day t-1 to rainfall at day t, respectively. In the gamma distribution function, Yt is the amount of 

precipitation (given Xt =1 when day t is rainy), α and β are distribution parameters. Subscripts 6, 7, 

and 8 stand for June, July, and August, respectively.

Parameter Luverne Morris Preston Rush City

P(W/D)6  0.27  0.33  0.31  0.33

P(W/D)7  0.23  0.30  0.28  0.29

P(W/D)8  0.21  0.26  0.27  0.28

P(W/W)6  0.44  0.48  0.48  0.50

P(W/W)7  0.34  0.40  0.37  0.38

P(W/W)8  0.37  0.40  0.42  0.38

α6  0.61  0.63  0.61  0.62

α7  0.61  0.63  0.61  0.62

α8  0.62  0.64  0.62  0.61

β6 17.95 13.81 18.43 15.74

β7 17.84 14.60 18.57 16.50

β8 16.23 13.16 17.21 17.99

The estimated parameters of the precipitation process model in Table 3 explain the 

historical precipitation process in the four counties. Preston and Rush City are located in 

the east, and they have relatively larger amounts of precipitation compared to Luverne 

and Morris in the west. The estimated transition probability from dryness to rainfall 

(P(W/D)) and from rainfall to rainfall (P(W/W)) are higher, and the β parameter of the 

gamma distribution (which determines the extent of extremely heavy rainfall) are larger 

for Preston and Rush City compared to Luverne and Morris.



- 242 -

Table 4. Simulated Weather Option Prices

Location
Precipitation Options GDD Options Both Options

Put (%) Call (%) Put (%) Call (%) w/Basis Risk w/o Basis Risk

Luverne

  Strike
a/

8.09 15.58 - 
c/

- 
c/

  Tick
b/

$8.11 $8.11 - -

  Price $2.79(0.78%) $1.45(0.41%) - - $4.24(1.19%) $9.64(2.72%)

Preston

  Strike 10.61 22.59 1,622 2,358

  Tick $4.41 $4.41 $0.11 $0.11

  Price $1.67(0.48%) $0.13(0.04%) $1.65(0.47%) $0.00(0.00%) $3.45(0.99%) $15.68(4.51%)

a/ Strike is the predetermined level by contract at which the put (call) option buyer can sell (buy) the 

weather event to the option seller. The unit of strike for precipitation options is inches and the unit of 

strike for GDD options is degree days. 

b/ Tick value is the indemnity payment per unit of adverse weather event (per inch for precipitation 

options and per degree for temperature options). The tick values and option prices are measured per 

acre. 

c/ Not available because we do not purchase the options based on the estimated yield response functions.

The option prices obtained by applying the daily simulation method over 10,000 

simulated GDD and precipitation processes are reported for Luverne and Preston in 

Table 4. The tick values and option prices are measured in 2007 dollars in order to 

compare with the 2007 crop insurance premiums. In order to observe the relative option 

price level the prices are reported as the percent of the 2007 soybean revenue in 

parenthesis. The with (w/) Basis Risk variable is the option price calculated under the 

local basis risk of (1 – R
2
) in the yield response model. Local basis risk is interpreted as 

the hedging gap caused by an imperfect weather yield relationship in the same 

geographic location. The without (w/o) Basis Risk variable reflects weighted option 

prices by adjusting each price by the corresponding R
2
 measure, assuming 100% of R

2
 

provides perfect coverage. For example, at Luverne the total price for both the precipi-

tation call and put options is $4.24 per acre under the local basis risk of 0.56 (R2 = 

0.44). The weighted option price assuming no local basis risk is $9.64 per acre, which 
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is calculated by dividing $4.24 by 0.44. This adjustment is an approximate measure to 

compare the weighted hedging costs for weather options and crop insurances at the same 

coverage levels. Simulated total prices for Preston are $3.45 per acre (or 0.99% of 

revenue) with basis risk and $15.68 per acre (or 4.51% of revenue) without basis risk.

Table 5. Prices of Weather Options and Crop Insurance

Location

Weather Option
MPCI (Price Election: 

$7.00/bu. in 2007)

GRP (Price Election:

$7.00/bu. in 2007)

Coverage Price(%)
a/ Coverage

(Gov. Subsidy)
Price(%)

a/ Coverage

(Gov. Subsidy)
Price(%)

a/

Luverne

(Avg. APH 

10Y = 45.0 

bu./acre)c/

44%
$ 4.24 

(1.19%)
85%(38%)

b/ $12.15 

(3.42%)
85%(59%)

b/ $ 5.44 

(1.53%)

100%
$ 9.64 

(2.72%)
100%(38%)

$14.29 

(4.03%)
100%(59%)

$ 6.40 

(1.80%)

100%(0%)
$23.06 

(6.50%)
100%(0%)

$15.61 

(4.40%)

Preston

(Avg. APH 

10Y = 44.6 

bu./acre)

22%
$ 3.45 

(0.99%)
85%(38%)

$17.17 

(4.93%)
85%(59%)

$ 3.17 

(0.91%)

100%
$15.68 

(4.50%)
100%(38%)

$20.20 

(5.80%)
100%(59%)

$ 3.73 

(1.07%)

100%(0%)
$32.58 

(9.36%)
100%(0%)

$ 9.10 

(2.61%)

a/ Prices represented as a percent (in the parenthesis) are calculated as a percent of the soybean revenue 

per acre (county average based on the price election $7.00/bu. per acre) in 2007. 

b/ The 85% coverage variable means that the crop insurance premium is calculated at the 85% coverage 

level, and 100% coverage variable is the adjusted premium recalculated at the 100% coverage level. 

The 38% in the parenthesis for MPCI (59% in the parenthesis for GRP) represent the government 

subsidy rate. 

c/ The average APH 10Y is the average of the county-level soybean yields during 1997-2006.

In Table 5 the prices of weather options are compared to those of MPCI and GRP. 

The prices of weather options and GRP are calculated at the county level, while MPCI 

premiums are calculated at the farm level. For crop insurance prices, the 85% coverage 

variable means that the premium is calculated at the 85% coverage level, the highest 

level in the MPCI plan, and 100% is the adjusted premium recalculated at the 100% 

coverage level (even though full coverage insurance is not provided in the market). The 
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first two rows of MPCI prices in each location are the amounts paid by the farmer, 

which is assumed to be 62% of total premium. The remaining 38% is the government 

subsidy, as set by the Agricultural Risk Protection Act of 2000. Subsidy rates vary by 

coverage level and type of insurance. The GRP at the 85% coverage level is provided 

with 59% subsidy rate so that farmers pay only 41% of the total premium. The last row 

of each location is the total premium at the 100% coverage level, assuming no subsidy 

is provided.

The approximate MPCI premiums for soybean at the 100% coverage level with no 

government subsidy are $23.06/acre at Luverne and $32.58/acre at Preston. These 

premiums are much higher than the corresponding weather option premiums of $9.64/ 

acre (Luverne) and $15.68/acre (Preston) at the 100% coverage level. The main reason 

for the higher MPCI premiums compared with weather options is that the MPCI 

premium is calculated at the individual farm level, which reflects larger yield variability. 

The weather option premium is calculated at the county level, which removes the 

individual farmer’s idiosyncratic yield variability. When the weather option premiums are 

compared with GRP premiums at the 100% coverage level with no subsidy, the gaps 

between the two premiums are much smaller. This is because both weather options and 

GRP premiums are measured at the county level. The GRP premiums at the 100% 

coverage level without subsidy for Luverne and Preston are $15.61/acre and $9.10/acre, 

respectively.

In Table 6 we compare hedging effectiveness indicators when using alternative 

hedging strategies at the farm-level to analyze weather options as a more efficient risk 

management tool for farmers at Luverne. The hedging effectiveness for the other 

locations is similar. The seven alternative hedging strategies include: no hedge, MPCI 

with no subsidy, MPCI with subsidy, GRP with no subsidy, GRP with subsidy, local 

station-based weather options, and Minneapolis-based weather options. For the farm-level 

risk indicators we use the average of the individual 24 farm risk indicators in each 

location based on 10,000 simulated yields and corresponding cost estimates for each 

individual farm.
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Table 6. Hedging Effectiveness

Location Indicator

Farm Level (Average of Farms)

No Hedge
MPCI

(No Sub.)
MPCI 

(Subsidy)
GRP

(No Sub.)
GRP 

(Subsidy)
Option 
(Local)

Option 
(Mpls.)

Luverne

Net Income $182.28 $175.69 $183.29 $183.52 $191.35 $182.25 $183.28

Sharpe Ratio
a/

1.226 1.322 1.381 1.387 1.449 1.240 1.247

VaR(10%)
b/

$32.69 $61.07 $68.69 $65.65 $73.48 $35.03 $36.07

CE
c/
(γ=0.001) $174.76 $170.14 $177.74 $177.88 $185.71 $174.94 $175.98

CE(γ=0.005) $146.73 $151.47 $159.07 $158.62 $166.45 $147.86 $148.89

CE(γ=0.009) $120.70 $137.05 $144.65 $143.44 $151.27 $122.97 $124.01

RP
c/
(γ=0.001) $7.52 $5.55 $5.55 $5.65 $5.65 $7.31 $7.31

RP(γ=0.005) $35.55 $24.22 $24.22 $24.90 $24.90 $34.39 $34.39

RP(γ=0.009) $61.57 $38.64 $38.64 $40.08 $40.08 $59.27 $59.27

a/ Sharpe Ratio is calculated under the assumption of risk free rate of 0.05. 

b/ Value-at-risk is measured at the 10% confidence interval. 

c/ Certainty equivalent and risk premium are measured at the three different levels of risk aversion

(γ=0.001, 0.005, 0.009).

The hedging effectiveness of weather options compared with a no hedge position at 

the farm level is limited. Higher values for the Sharpe ratio, value-at-risk, and certainty 

equivalent, and a lower risk premium all imply greater hedging effectiveness. Most of 

the risk indicators that use weather options at the farm level are not significantly 

improved compared with the no hedge alternative and they are worse when compared 

with both the MPCI and GRP hedges. For example, when using local weather options 

at Luverne the Sharpe ratio, VaR, certainty equivalent at γ=0.005, and risk premium at 

γ=0.005 are 1.240, $35.03, $147.86, and $34.39, respectively. These are slightly im-

proved from the values obtained with no hedge (1.226, $32.69, $146.73, and $35.55). 

They are worse than those derived from using MPCI with no government subsidy 

(1.322, $61.07, $151.47, and $24.22). Vedenov and Barnett (2004) also find there is 

only limited efficacy of weather derivatives in hedging disaggregated production expo-

sures due to large yield variability at the farm level. MPCI insures the highly variable 
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individual farm-level yields relatively better than weather derivatives because MPCI 

covers individual farm-level losses directly. Even GRP based on the county-level yield 

provides better hedging effectiveness to individual farmers compared with weather 

options, mainly due to the hedging gap caused by local basis risk (an imperfect weather- 

yield relationship). These results are consistent with the previous literature, which shows 

that weather options are not an effective hedging tool for individual farmers implying 

that farmers will continue to prefer federal crop insurance for weather risk management. 

Table 7. Hedging Effectiveness and Spatial Aggregation

Options Indicator
Four Counties

Average of Farms Average of Counties Aggregate

Minneapolis-

based

Net Income $134.34 $135.09 $130.95

Sharpe Ratio 0.803 1.229 1.506

VaR (10%) -$27.11 $14.11 $35.39

CE (γ=0.001) $125.46 $130.65 $128.17

CE (γ=0.005) $92.28 $112.87 $117.02

CE (γ=0.009) $60.15 $95.11 $105.82

RP (γ=0.001) $8.88 $4.44 $2.78

RP (γ=0.005) $42.06 $22.22 $13.92

RP (γ=0.009) $74.19 $39.98 $25.13

If individual farmers are not the likely primary users of weather options, then how 

might these options play a role in weather risk management? In order to address this 

question, we note that hedging effectiveness increases as spatial aggregation increases. 

Table 7 illustrates the effect of spatial aggregation on hedging effectiveness by using 

weather options where farm level (Average of Farms), county level (Average of 

Counties), and four-county aggregate level (Aggregate) are compared for soybean. The 

Average of Farms statistics are calculated as the average of the individual 96 farm 

indicators in the four counties (24 farms for each of the four counties). The Average of 
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Counties statistics are calculated as the average of the individual four county indicators. 

The four-county Aggregate results are obtained by averaging the data across counties 

and then performing the analysis. All risk indicators using Minneapolis-based options 

improve as the level of aggregation increases from the farm level to the four-county 

aggregate level. The Sharpe ratio and VaR by using Minneapolis-based weather options 

increase remarkably from 0.803 to 1.506 and from -$27.11 to $35.39, respectively, as 

the level of spatial aggregation increases. The certainty equivalent and risk premium are 

also improved at all levels of risk aversion as the level of spatial aggregation increases.

In the federal crop insurance program, private crop insurance companies provide 

insurance products to farmers as an agent of the government and they transfer most of 

that crop risk exposure to the government. However, in the past the government has not 

hedged these risk exposures. Rather, government has simply tried to diversify the 

idiosyncratic risks by spatially aggregating the crop yield risks across farmers. This 

implies a significant social cost, because the potential losses caused by not hedging risk 

exposures would need to be covered by taxpayers. Although idiosyncratic crop yield risk 

can be reduced by the government through aggregating the individual risk exposures at

Table 8. Government Use of Weather Options at the County Level

County Level

No Hedge Option Option

Location Indicator (Subsidy) (Local) (Mpls.)

Luverne
Net Income  $ 0.57  $ 0.54  $ 1.58

VaR (10%) -$10.58 -$ 7.24 -$ 6.20

Morris
Net Income -$ 1.88 -$ 1.87 -$ 2.31

VaR (10%) -$22.81 -$22.08 -$22.52

Preston
Net Income  $ 0.04  $ 0.04  $ 0.53

VaR (10%) -$ 0.84 -$ 0.47  $ 0.02

Rush City
Net Income -$ 5.65 -$ 5.65 -$ 5.12

VaR (10%) -$34.39 -$33.34 -$32.38
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the county or higher level, the government still faces systematic weather risk without a 

risk hedge. How might the government use weather options as a risk management tool 

to reduce the implied social cost?

Suppose that the government provides GRP products with subsidy to farmers and 

hedges those crop risk exposures by purchasing weather options at the county level. In 

Table 8 we compare the net income and value-at-risk of the government between a no 

hedge position, a local station-based weather option hedge, and a Minneapolis-based 

weather option hedge for the four counties. The net income of the government realized 

from the federal crop insurance program is computed as: the GRP premium received 

from farmers minus the GRP indemnity payments paid to farmers minus the weather 

option premium paid to the option provider for the risk hedge plus the weather option 

payoffs received from the option provider. Let us assume no other administrative costs 

in this calculation. The net income and VaR of the government is calculated over the 

10,000 simulated county-level crop yields for each of the four counties. Here the only 

risk indicator used for comparison is the VaR. The Sharpe ratio of the government is 

not measured because it is difficult to evaluate the federal service cost in order to 

calculate the Sharpe ratio. In addition, the certainty equivalent and risk premium at 

various levels of risk for the government is not used because the government is assumed 

to act as a risk-neutral agent.

The government’s VaR improves from -$10.58/acre with no hedge to -$6.20/acre by 

using Minneapolis-based options in Luverne. All other counties show improvements in 

the VaR of the government by using either local station-based weather options or 

Minneapolis-based weather options to hedge yield risk. This implies that the government, 

as the reinsurer, could reduce idiosyncratic risk by aggregating farm-level production 

exposures and hedging the remaining systematic weather risk with spatially-aggregated 

weather derivatives. As a result, weather options might be used by the government as an 

effective hedging tool at the county level (or higher levels of aggregation) for the 

purpose of reducing the social cost of crop insurance.

Since local weather options based on the four specific counties are not traded due to 

liquidity and fair pricing problems in the market, the CME option is used based on 
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several large reference cities near to the counties. Here we need to consider geographic 

basis risk, which is caused by the difference between the weather index at a CME 

reference city and at a specific farm location, where geographic basis risk is measured 

as the difference in hedging effectiveness between local and nonlocal derivatives. When 

comparing risk indicators between Option (Local) and Option (Minneapolis) in Tables 6 

and 8, the difference is small. This implies that geographic basis risk is minimal in 

southern Minnesota. Woodard and Garcia (2007) also find that the geographic basis risk 

from hedging with nonlocal contracts is small when comparing hedge effectiveness 

between local options. 

This result is interesting since the conventional wisdom is that geographic basis risk 

may be a large impediment to the implementation of weather hedges in the agricultural 

industry. It is likely due to the fact that the Midwest has relatively homogeneous (less 

variable) weather conditions across counties when compared to other U.S. regions. In 

particular the correlations of daily temperature between Minneapolis and each of the four 

local stations in this study are higher than 0.90. Even though daily precipitation tends to 

be less spatially correlated, growing season precipitation shows a relatively high 

correlation that is close to 0.50 between Minneapolis and each of the four local stations. 

This result indicates that local weather risk can be effectively hedged with Minneapolis- 

based weather derivatives in southern Minnesota where geographic basis risk is not 

large. This approach should be applied cautiously to other locations, crops, or other 

types of weather derivatives after considering spatial correlation of crop losses and 

weather variables across locations. 

Conclusions

Social cost includes the explicit and implicit costs that exist in the federal crop 

insurance program including government insurance program subsidies and the govern-

ment’s unhedged risk exposure. When hedging cost and effectiveness of weather options 
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and crop insurance are compared for soybean farmers in southern Minnesota the hedging 

effectiveness of using weather options is limited at the farm level as compared to crop 

insurance products. This is because weather options insure against adverse weather 

events that cause damage, while crop insurance protects farmers against their crop losses 

directly. This is further evidence that individual farmers will continue to prefer using 

crop insurance with the government premium subsidy rather than weather derivatives as 

a weather risk management strategy. However, the government is the re-insurer in the 

crop insurance program and it currently does not fully hedge the weather risk exposure. 

Historical simulation is used to demonstrate that the government could reduce social cost 

due to the unhedged risk exposure by designing a program that uses weather options at 

the county or higher levels of aggregation in the financial market. The government could 

use this approach to selectively reduce its risk exposure and the need to subsidize the 

crop insurance program. 
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