2013 고령자 교통안전 개선방안 연구 국제워크숍

Age-Friendly Safety and Welfare in Transportation

주최 : (사)대한교통학회 대전·충청지회 주관 : 충남발전연구원, 한밭대학교 건설환경조형대학

일시 : 2013년 6월 13일(목) 15:30~18:00 15:30~18:00, June 13 (Thursday), 2013 장소 : 한밭대학교 산학협동관 s5동 108호 108, Industry-University-Institute Collaboration Building(s5), Hanbat Univ.

Program

<u>16:00~16:10</u>

Opening address :

Myung Soo Kim, President, Daejeon&Chungcheong branch, Korea Society of Transportation Congratulatory message :

Jin Do Park, President, Chungnam Development Institute

<u>16:10~17:10</u>

- Topic 1 : Post-accident adaptation behavior and dynamic travel information: A comparison between the elderly and non-elderly **Prof. Junyi Zhang** (Hiroshima Univ.)
- Topic 2 : Impacts of urban planning & transportation on healthy ageing **Dr. Dick Saarloos** (Univ. of Western Australia)
- Topic 3 : Improvement of walking environments for the transportation vulnerable **Dr. Jung Beom Lee** (Daejeon Development Institute)
- 17:10~17:20 Coffee Break
- 17:20~18:00 Discussion, Q&A

<u>18:10</u> Closing

Presenters

Prof. Junyi Zhang is a professor of Hiroshima University. Focusing on the various issues related to city, transportation, environment and tourism, as of April 2013, he already published 266 refereed academic papers (English: 209) and 294 non-refereed academic papers (English: 151). He has been awarded Best Paper Awards and Outstanding Paper Awards for 10 times by international/domestic associations and conferences. He has been acting as an ad-hoc reviewer for more than 30 internationally well-recognized journals and conferences in the fields of transportation, urban planning, energy and environment, tourism, and marketing.

Presenters

Dr. Dick Saarloos holds a college degree in urban design, and received M.Sc. and Ph.D. degrees in urban planning from the Eindhoven University of Technology (Netherlands). He has been working as a postdoctoral fellow in Hiroshima (Japan) and Perth (Australia). Currently, he resides in Korea, while being affiliated with The University of Western Australia as an adjunct research fellow. His main research interests are Spatial and temporal behavior of people in response to the built environment, Influences of the built environment on people's quality of life and health, Decision support instruments for urban planners and designers, and Agentbased modeling and simulation of people-environment interactions.

Presenters

Dr. Jung Beom Lee is a senior researcher at Daejeon Development Institute in Korea since 2009. He had his Ph.D. in civil engineering at Rutgers University under the guidance of Professor Kaan Ozbay. He is the recipient of the 2009 Best User Paper Award in Transportation Research Board Joint Simulation Subcommittee. His research interest is sustainable urban transportation planning and traffic safety for pedestrians in metropolitan settings.

International Workshop "Age-friendly Safety and Welfare in Transportation" Hanbat National University (Daejeon), June 13, 2013

> Post-accident adaptation behavior and dynamic travel information: A comparison between the elderly and non-elderly

Junyi ZHANG & Ying JIANG Hiroshima University zjy@hiroshima-u.ac.jp

Introduction

- Serious negative impacts of traffic accidents are represented not only by the large amount of property losses and human injury and fatality tragedies, but also the huge amount of travel time losses, follow-up accident recurring and so on.
- It is expected that effective countermeasures of ITS-based real-time accident information provision play various important roles in solving the above negative impacts.
- Information provision studies about how to provide valuable information and whether or not display reliability information to drivers become more and more important in the current traffic accident information studies.

Purpose

Focusing on the expressway in Japan, this study examines how individualized dynamic traffic information influences drivers' adaptation behavior under different decision scenes and contexts.

In addition to conventional traffic information, several new types of traffic information related to the occurrence of traffic accidents are also reflected.

A large-scale web survey

5

Pilot Travel information needs 2,500 Survey Residents residing in the five prefectures in the persons Chugoku Region, who used the expressway at (2011.12) least once within the past one year. 1,923 SP Survey Adaptation persons behavior (2012.04)(78%) Fresh 577 persons **Representative sample:** 30,000 SP responses 577 Drop out (No. 1 in the world !?) persons - 2,500 respondents (12 cards/person) new respondents: 577 - 3 scenes: Before departure, On the way to expressway, On expressway (10,000(=2,500 * 4 SP)/scene)

Travel information needs

■必要 ■どちらかと言えば必要 ■どちらでもない ■あまり必要ではない ■不要

.)		1	761			4	09	510
.)		16	54			50	;	645
報		157	2			479	14	4222
か		1185			819		17	6418
.)		1351			64	2	17	4569
.)		1241			729		200	578
報		1206			698		235	584
婽		1076		79	1		270	632
椒		1002		790		3	27	707
ene e		934		838		32	3 1	052
Ē難	429	8	12		591	2	42	138
報	434	82	23		588	2	47	150)
腹	403	784		417		410	2	28
報	418	699		7	54	2	36	135
R物	316	726		523		424	25	3
離	315	675		710		342	2	00
報	395	539		685		340	28	3
2)	275	611		773		373	2	10
碰	250	528	446		645		373	

予測時間(例えば、約30分で渋滞が解消します 渋滞の長さ(例えば、渋滞は20kmです) 道路の通行止めの有無に関する情 渋滞時間や渋滞の長さが増加中か減少中 予測時間とその確率(例えば、30分以内で解消する確率は50%です 予測時間と誤差(例えば、15~45分で渋滞は解消します 道路の車線規制の有無に関する情 一般道を利用した代替経路性 高速道路を利用した代替経路作 事故が発生してからの経過影 事故現場周辺のIC・JCTまでの路 事故現場周辺のIC・JCTの作 事故の利 スマートICが設置されているSAの位置作 当事者の衝突対象 事故現場周辺のSA・PAまでの筆 他の交通機関を利用した代替交通手段性 事故現場周辺のSA・PAの情報(設備、店舗な 事故を起こした事

Before departure

Travel information needs

■必要 ■どちらかと言えば必要 ■どちらでもない ■あまり必要ではない ■不要

予測時間(例えば、約30分で渋滞が解消します。)		155	6		47	7 62
渋滞の長さ(例えば、渋滞は20kmです。)		155	5		47	3 68
渋滞時間や渋滞の長さが増加中か減少中か		1202		-	707	13652
道路の通行止めの有無に関する情報		1407			482	154381
予測時間と誤差(例えば、15~45分で渋滞は解消します。)	,	1285			596	161491
予測時間とその確率(例えば、30分以内で解消する確率は50%です。)		1262			598	167587
道路の車線規制の有無に関する情報	,	1154		623		215 759
一般道を利用した代替経路情報		1023		734		233 6864
事故が発生してからの経過時間	,	980		739	2	52 9655
高速道路を利用した代替経路情報		963		714	- 28	33 8379
事故現場周辺のIC・JCTまでの距離	496	6	56	544	2	29 187
事故現場周辺のIC・JCTの情報	471	66	4	551	24	5 191
事故の程度	388	641		424	382	287
当事者の衝突対象物	365	642		452	386	277
スマートICが設置されているSAの位置情報	401	598		703	22	1 199
事故現場周辺のSA・PAまでの距離	378	584		620	314	226
事故現場周辺のSA・PAの情報(設備、店舗など)	316	552		671	343	240
パーク&ライドを利用した移動に関する情報	356	477	6	59	317	313
事故を起こした車種	262	529	461	51	.2	358

On the way to expressway

Travel information needs

■必要 ■どちらかと言えば必要 ■どちらでもない ■あまり必要ではない ■不要

-	1591				450	638
-	1592				446	620
-	1452			469	9	14263
1	313			595		43532
1	362			540	- 1	57487
1	335			555	1	57583
1	346			505	1	99 300
122	26			554	237	4959
1122			64	48	217	8266
1055			653		269	7781
1057			642		274	8082
804		672		387	14	2130
746		680		420	14	4 145
697		714		412	16	150
737		651		448	15	5 144
709		644		467	156	159
620	66	0		492	194	169
593	682	2		485	196	179
590	594		5	72	183	196
529 💻	622		57	12	215	197
466	642		417	320) (290
435	624		431	347		298
342 53	7	460		454	3	42

渋滞の長さ(例えば、渋滞は20kmです。) 予測時間(例えば、約30分で渋滞が解消します。) 道路の通行止めの有無に関する情報 渋滞時間や渋滞の長さが増加中か減少中か 予測時間と誤差(例えば、15~45分で渋滞は解消します。) 予測時間とその確率(例えば、30分以内で解消する確率は50%です。) 道路の車線規制の有無に関する情報 高速道路出口(ランプ)の渋滞情報 事故が発生してからの経過時間 一般道を利用した代替経路情報 高速道路を利用した代替経路情報 最寄りのIC・JCTまでの距離 最寄りのIC・JCTの情報 最寄りのSA・PAまでの距離 事故現場周辺のIC・JCTまでの距離 事故現場周辺のIC・JCTの情報 事故現場周辺のSA・PAまでの距離 最寄りのSA・PAの情報(設備、店舗など) スマートICが設置されているSAの位置情報 事故現場周辺のSA・PAの情報(設備、店舗など) 当事者の衝突対象物 事故の程度 事故を起こした車種

On expressway

SP survey: Attributes

9

Based on the pilot survey conducted in 2011, this study selected 12 attributes, each of which has two or three levels, including

- accident condition information (two attributes): (1) location from entrance ramp to the accident site (hereafter, distance to site) (close or far) and (2) accident severity (fatal, no fatal, or no information));
- accident impact information (two attributes): (3) queue length (long, short, or no information) and (4) queue changing trend (increase, decrease, or no information);
- alternative route or travel mode information (three attributes): (5) ordinary road, (6) other expressway route, and (7) other travel modes; all the three attributes have the same three levels, i.e., yes, no, or no information; and
- traffic measure information (five attributes): (8) traffic regulation (with/without regulation, or no information), (9) clearance time (long, short, or no information), (10) clearance time estimation accuracy (high or low), (11) probability of clearing away the traffic congestion at a certain clearance time (high (80%), low (60%)), and (12) time provision method (point information or interval information).

Orthogonal fractional factorial design: 24 SP profiles were obtained

SP survey: Alternatives

Be Or	fore departure & In the way to expressway		On expressway
1	No change	1	No change
2	Change departure time (Early departure)	2	Wait& see at SA/PA
3	Alternative ordinary road	3	Alternative expressway
4	Other travel mode	4	Ordinary road detour
5	Cancel the trip	5	Ordinary road
		6	Other travel mode
		7	Cancel the trip

SP profiles

Card no.	Q-length	Q-trend	Clearan- ce time	Accuracy of clearance Time interval	Time interval provision	Accident Severity	Alternative ordinary road	Alternative expressway	Other travel mode	Lane regulation	Distance to accident site	Clearance time accuracy
card_1	Long	No info	Short	No info	No info	No info	No info	No info	No info	No info	Long	60%
card_2	No info	Increasing	Short	No info	No info	No info	Don't have	Don't have	Have	Don't have	Long	60%
card_3	Short	Decreasing	Long	No info	No info	No info	Have	Have	Don't have	Have	Short	60%
card_4	Short	Increasing	Long	High accuracy	Provision	No info	No info	No info	Have	No info	Short	80%
card_5	Long	Decreasing	Long	High accuracy	No info	Have fatal accident	Have	No info	Have	Don't have	Long	60%
card_6	Long	Increasing	Short	Low accuracy	No info	No fatal accident	Don't have	No info	Don't have	Have	Short	80%
card_7	No info	Decreasing	Short	Low accuracy	Provision	Have fatal accident	Don't have	Have	Have	No info	Short	60%
card_8	Long	Decreasing	Short	High accuracy	Provision	No info	Don't have	Don't have	Don't have	Don't have	Long	80%
card_9	Long	No info	Long	No info	No info	Have fatal accident	Don't have	Have	Don't have	No info	Long	80%
card_10	No info	Decreasing	Long	Low accuracy	No info	No fatal accident	Have	Don't have	No info	No info	Long	80%
card_11	No info	Decreasing	Short	Low accuracy	No info	No info	No info	No info	Don't have	No info	Long	60%
card_12	Short	Increasing	Short	High accuracy	No info	Have fatal accident	Don't have	Have	No info	No info	Long	60%
card_13	No info	No info	Short	High accuracy	No info	Have fatal accident	No info	Don't have	Don't have	Have	Short	60%
card_14	Short	No info	Long	Low accuracy	No info	No info	Don't have	Don't have	No info	Don't have	Short	60%
card_15	Long	Increasing	Short	Low accuracy	No info	No info	Have	Have	Have	Have	Long	60%
card_16	Long	Increasing	Long	Low accuracy	Provision	Have fatal accident	No info	Don't have	No info	Have	Long	60%
card_17	No info	No info	Long	High accuracy	No info	No fatal accident	Don't have	No info	Have	Have	Long	60%
card_18	Long	Decreasing	Short	High accuracy	No info	No fatal accident	No info	Have	No info	Don't have	Short	60%
card_19	Short	Increasing	Short	High accuracy	No info	No fatal accident	Have	Don't have	Don't have	No info	Long	60%
card_20	No info	Increasing	Short	No info	No info	Have fatal accident	Have	No info	No info	Don't have	Short	80%
card_21	Short	No info	Short	Low accuracy	Provision	Have fatal accident	Have	No info	Don't have	Don't have	Long	60%
card_22	Short	No info	Short	Low accuracy	No info	No fatal accident	No info	Have	Have	Don't have	Long	80%
card_23	Short	Decreasing	Short	No info	No info	Have fatal accident	No info	Don't have	Have	Have	Long	80%
card_24	No info	No info	Short	High accuracy	Provision	No info	Have	Have	No info	Have	Long	80%

Before Departure

On the Way to Expressway

Adapatation behavoir: Before Departure

Adapatation behavoir: On the way to expressway

Adapatation behavoir: On expressway

Exhausted CHAID analysis

16

Heterogeneous adaptation

Before Departure

Before D)eparture F	Pattern				
D	Distance	Clearance	No fatal	Queue	Fatal	clearing
Pattern#	to Site	Time	accident	decrease	accident	away %
1	<=17.4	<=20				
2	<=17.4	(20,28]	0			
3	<=17.4	(20,28]	1			
4	<=17.4	(28,48]	0			
5	<=17.4	(28,48]	1			
6	<=17.4	(48,68]				
7	<=17.4	(68,72]	0			
8	<=17.4	(68,72]	1			
9	<=17.4	>72		0		
10	<=17.4	>72		1		
11	(17.4,34.8]	<=28		0		
12	(17.4,34.8]	<=28		1		
13	(17.4,34.8]	(28,84]	0			
14	(17.4,34.8]	(28,84]	1			
15	(17.4,34.8]	>84				
16	(17.4,34.8]	<=20				
17	(17.4,34.8]	(20,68]		0		
18	(17.4,34.8]	(20,68]		1		
19	(17.4,34.8]	(68,84]		0		
20	(17.4,34.8]	(68,84]		1		
21	(17.4,34.8]	(84,106]				
22	(17.4,34.8]	>106				
23	(69.3,140]			0	0	
24	(69.3,140]			1	0	
25	(69.3,140]	<=28			1	
26	(69.3,140]	(28,72]			1	
27	(69.3,140]	(72,106]			1	
28	(69.3,140]	(106,142]			1	
29	(69.3,140]	>142			1	
30	>140				0	0.6
31	>140				0	0.8
32	>140			0	1	
33	>140			1	1	

Note: "clearing away %" represents "the probability of clearing away the traffic congestion at a certain clearance time;

Exhausted CHAID analysis

17 Heterogeneous adaptation On the way to expressway

Note: "clearing away %" represents "the probability of clearing away the traffic congestion at a certain clearance time;

Exhausted CHAID analysis

D.11

Heterogeneous adaptation

On expressway

18

							/																										JII Expre	ssway rall	em					
				Do	ric	ior	۰D	att	hor	'n	Q. (D٨	+.	، ر	ho	ico	R	h	wi	or		n c	vr	ro		w3							Pattern#	Distance	Clearance	No fatal	Queue	Fatal	Time	clearing
				ν			ГГ	au	LCI	11 (XI	ΝU	ult		ΠU		D	5110	1 1 1				:vh	ЛС	22	vv a	iy)						1	to Site	l ime	accident	decrease	accident	accuracy	away %
													2	(6105]	<-20 <-20																									
	No change SA*PA rest Sub Expressway Orinary road detour Sub_ordinary road Sub Mode Cancel										el			2	(0,10.5]	<-20 <-20																								
																																	1	(10.3,17.4) (=17.4	(20.68]		1			
100% -									-	-																			7		7	- -	5	<=17.4	(20,68]		0			
				F	2	\backslash	$\boldsymbol{\nu}$						\mathbf{A}	-				A	\searrow						V	$\langle \rangle$				\rightarrow			6	<=17.4	>68		1			
90% -	┿╋╾		┢		Н	\rightarrow									-	F	\succ	\leftarrow			÷				╋		\mathbb{V}	┢				- -	7	<=17.4	>68		0			
																				/ `													8	(17.4,69.3]	<=20		1			
80% -	┼╋╌	-	-						+	+		A A		-		Н				<u> </u>	-	+		- 4			/	-			⊢∔	-	9	(17.4,69.3]	<=20		0			
									/	/	\setminus /		\backslash									Υ			\backslash	/ \							10	(17.4,69.3]	(20,42]	0				
70% -							4 N	4	4		\mathbf{V}		\downarrow	4						#	\downarrow	4	4	4	V	_	ľ			$\mathbf{\Lambda}$		- 1	11	(17.4,69.3]	(20,42]	1				
, 0,0								\mathbb{V}	1				\mathbf{V}																				12	(17.4,69.3]	(42,48]	0				
C00/		J						\mathbb{N}		//\\	\setminus												/					/ `	\mathbf{V}				13	(17.4,69.3]	(42,48]	1				
00%		-							\mathbf{Z}	7 1	\mathbf{X}	77		$\boldsymbol{\Gamma}$			\mathbf{T}	7				V					\mathcal{A}						14	(17.4,69.3]	(48,72]	0				
							$\ \ \rangle$		_/		\\//		\backslash /		1\\							\	/			Y							15	(17.4,69.3]	(48,72]	1				
50% -	╞╋╋	t			Н		H	\vdash	t		\uparrow		$\uparrow /$				H	\vdash		HN	t	\mathbf{V}	t									- [16	(17.4,69.3]	(72,106]		1			
			$^{\prime}$		\setminus								\ 🖌 /	/	$ \rangle$		\setminus				\backslash				Y								17	(17.4,69.3]	(72,106]		0			
40% -		\checkmark	+	\rightarrow	\rightarrow		+	\rightarrow	╉	+	╋	╉	+/	╋		\mathbb{N}	+	+	_	+	+	╉	╋	╋	╋	+	₽	+-		+	⊢⊦	- [18	(17.4,69.3]	>106					<=4.8
																	$\setminus \setminus$	/	Λ														19	(17.4,69.3]	>106					(4.8,7.7]
30% -								_				4	-					4	4	4	$- \Delta$		4	4	4					1		- [20	(17.4,69.3]	>106					(7.7,12]
					Ň						\mathbf{N}			/			$ \rangle$					\backslash											21	(17.4,69.3]	>106					>12
200/																						V		\mathbf{A}									22	(69.3,140]	<=42		1			
20%			Г						Т			Т	\mathbf{V}	Г			\setminus			Т	Т	Т	Т	X		7 Г					\mathbf{N}		23	(69.3,140]	<=42		0			
																			-						\backslash								24	(69.3,140]	(42,106]				0.6	
10% -			t						T			T				Н				T		T	T	T	T		t					- _	25	(69.3,140]	(42,106]				0.8	
																																	26	(69.3,140]	(106,136]			0		
0% -																																- _	27	(69.3,140]	(106,136]			1		
	1	72	ñ	4	ה ה	2 2	8	ور	10	11	12	13	14	15	16	7 5	0 0	20	21	22	23	24	25	26	27	28	29	30	31	32	84		28	(69.3,94.5]	>136					
	err	er	er	er	5 3	L D	err	er	Ĕ	Ë	Ľ	Ë	Ē	Ľ	Ē		ΞÈ	Ē	Ë	Ľ.	Ľ.	Ľ	Ē	Ë	Ë	Ē	Ē	Ë	Ë	Ē	Ë Ë		29	(94.5,140]	>136					
	att	att	att	att	11 att	att	att	att	te	te	te	te	te	te	te .	e i	י ה	te	te	te	te	te	te	te	te	te	te	te	te	te .	te te		30	>140	<=106			0		
	à	Ľ,	۵	م	ž č	Ľď	٦	ď	Pat	Pat	Pat	Pat	Pat	Pat	Pat.			Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat	Pat		31	>140	>106			0		
									_	_	-	-	_	- ,					_	_	_	-	-	_	_	-	_	-	_	_			32	>140	<=68			1		
														L	vecisi	UN P	attel	n															33	>140	(68,136]			1		
																																	34	>140	>136			1		

Note: "clearing away %" represents "the probability of clearing away the traffic congestion at a certain clearance time;

	Before	departure			On the	way to expr	essway		Or	n expressway	/							
MNL	Alternatives	Early	Ordinary	Others	Early	Ordinary	Others	Rest at	Other	Detour	Ordinary	Others						
	Factors	departure	Road		departure	Road		nearby	expressway	from	road							
analysis	(inc. SP attributes)							SA/PA		ordinary	usage							
	Constant	-1.16	2.11	6.35	-0.75	2.45	1.65	2.23	-4.09	4.48	3.45	5.45						
		0.30	1.32	-0.01	0.03	1.05	0.09	0.70	-0.49	0.46	0.33	-0.56						
10	Distance_site	-1.95	-5.53	-3.68	-1.61	-5.41	-3.44	0.00	0.49	-5.12	-2.59	0.00						
19		-1.84	-5.15	-5.21	-1.83	-4.47	-4.15	0.00	-1.13	-4.68	-2.10	0.00						
	Fatal_accident	-0.13	0.07	0.16	0.14	0.05	0.12	-0.05	0.23	-0.03	0.14	-0.05						
		0.26	0.49	0.60	0.23	0.33	0.36	0.03	0.16	0.10	0.07	0.30						
	Clearance time	0.00	-0.05	0.02	-0.06	0.00	0.03	-0.04	-0.13	-0.03	0.00	0.03						
		-0.11	0.38	0.36	0.04	0.11	0.13	-0.12	-0.04	0.03	0.09	0.09						
	Queue length	-3.16	0.27	-1.38	1.23	1.12	1.02	1.74	1.97	0.21	0.31	0.39						
		7.05	-3.04	-3.77	0.52	0.42	-0.31	0.60	1.62	0.47	0.56	0.65						
	Trip purpose	0.05	0.25	0.30	-0.14	0.17	0.21	-0.05	-0.14	0.12	-0.05	-0.41						
		-0.04	0.04	0.19	0.06	0.10	0.15	0.02	-0.09	0.08	-0.02	0.06						
	No_fatal_accident	0.03	-0.13	0.20	-0.11	-0.44	-0.52	0.05	0.36	-0.14	-0.27	-0.22						
		-0.10	-0.27	-0.28	-0.23	-0.36	-0.72	-0.10	-0.46	-0.44	-0.56	-0.51						
	Traffic_regulation	0.21	0.00	0.08	0.02	-0.18	0.06	0.15	-0.22	-0.10	-0.19	0.03						
		0.06	0.08	0.06	-0.03	-0.05	-0.08	0.05	0.09	-0.03	-0.03	-0.10						
	No_traffic_regulation	-0.02	-0.23	-0.50	-0.08	-0.27	-0.34	-0.06	-0.66	-0.19	-0.49	-0.64						
		-0.05	-0.14	-0.20	-0.11	-0.15	-0.17	-0.10	-0.22	-0.28	-0.11	0.00						
	Clearance_time_accuracy	-0.80	-1.47	-1.93	-1.45	-1.30	-1.83	-1.31	-2.07	-1.70	-1.72	-1.55						
		-0.60	-1.09	-0.98	-0.17	-0.55	-0.62	-0.04	0.30	-0.60	-0.40	-0.56						
	Time_interval_value	3.94	5.10	7.45	8.10	3.11	6.06	9.28	17.19	13.71	9.18	14.60						
		2.65	2.51	1.91	9.08	7.60	13.48	13.09	23.06	15.52	7.54	11.60						
	Time_interval_info	0.08	-0.04	0.40	-0.39	-0.25	-0.16	-0.02	-0.52	-0.48	-0.34	-0.05						
		0.02	-0.19	-0.19	-0.49	-0.50	-0.89	-0.62	-1.45	-0.85	-0.50	-0.69						
	Queue_increasing_trend	-0.14	-0.11	-0.14	-0.07	-0.07	-0.36	0.08	0.16	-0.09	-0.05	-0.25						
		0.08	0.05	-0.02	-0.09	0.00	-0.10	0.03	-0.42	-0.10	0.02	-0.02						
	Queue_dcreasing_trend	0.05	-0.17	-0.29	0.24	-0.30	-0.50	0.13	-0.02	-0.11	-0.14	-0.62						
		-0.17	-0.43	-0.43	-0.21	-0.38	-0.56	-0.02	-0.46	-0.37	-0.32	-0.29						
	Alternative_expressway	-0.15	0.10	0.08	-0.39	-0.08	-0.89	-0.32	1.06	0.06	-0.21	-0.23						
	Alternative ne evanceway	0.00	0.19	0.15	-0.05	-0.01	0.06	-0.22	0.62	-0.18	-0.26	-0.04						
	Alternative_no_expressway	-0.21	-0.12	0.00	-0.14	-0.19	-0.23	-0.45	-0.63	-0.35	-0.19	-0.30						
	Alternative ordinary road	-0.04	0.03	0.18	0.04	-0.03	-0.01	-0.09	-0.21	-0.20	0.05	0.01						
	Alternative_ordinary_road	-0.04	0.50	-0.34	-0.03	0.29	-0.21	0.19	0.18	0.1/	0.30	-0.20						
	Alternative no ordinary road	0.13	0.10	0.34	0.01	-0.024	0.21	0.01	0.40	-0.13	0.21	0.10						
Deference		0.05	-0.11	-0.13	0.05	-0.02	-0.12	0.37	0.05	0.13	-0.10	-0.06						
Reference:	Alternative mode	-0.20	-0.04	-0.15	-0.12	-0.02	0.12	-0.11	-0.09	-0.28	0.10	-0.55						
na abanaa	,	-0.08	-0.02	-0.10	-0.07	-0.04	0.06	-0.01	0.05	-0.20	0.11	0.03						
no change	Alternative no mode	-0.06	-0.28	-0.20	-0.40	-0.31	-0.24	-0.17	-0.23	-0.47	-0.33	-0.06						
-		-0.06	-0.06	-0,13	-0,13	-0.17	-0.05	-0.10	-0.23	-0.26	-0,13	-0.01						
Unnor	Age	0.26	0.04	-0.84	0.27	-0.01	-0.04	-0.21	0.64	-0.40	-0.23	-0.66						
opper.	-	0.02	0.10	0.01	0.00	0.07	-0.06	-0.06	-0.05	0.10	0.11	-0.02						
Eldorly	Gender	-0.26	-0.38	-0.84	-0.21	-0.31	-0.78	-0.16	0.22	-0.37	-0.27	-0.94						
LIUCITY		-0.25	-0.13	-0.41	-0.20	-0.19	-0.37	-0.32	-0.36	-0.39	-0.29	-0.53						
lower	Income	0.00	0.00	-0.41	0.07	0.14	-0.22	-0.19	0.70	0.02	0.20	0.10						
LUWEL		-0.37	-0.25	-0.18	-0.24	-0.16	-0.16	-0.25	-0.30	-0.12	-0.14	-0.19						
Non-elderly	Housewife	0.36	0.01	-0.35	0.18	-0.06	-0.38	0.12	0.76	-0.09	0.30	-0.09						
Non clucity		-0.30	-0.16	-0.39	-0.27	-0.30	-0.43	-0.34	-0.45	-0.42	-0.42	-0.60						

MNL analysis

Influential factors (Variance proportion (larger) -> Influence (Larger))

Before departure (Elderly)

20

Before departure (Non-elderly)

MNL analysis

Influential factors (Variance proportion (larger) -> Influence (Larger))

On the way to expressway (Elderly)

21

On the way to expressway (Non-elderly)

MNL analysis

Influential factors (Variance proportion (larger) -> Influence (Larger))

22

On expressway (Elderly)

On expressway (Non-elderly)

Conclusions

- Influential information contents are considerably different across the adaptation patterns, confirming the importance of individualized dynamic traffic information.
- Nearly 70% of drivers' behaviors will be influenced by the information provision of traffic accident related information on expressways.

Conclusions

	Influential information	Elderly	Non-elderly
/	Before departure	 Distance to accident site No alternative ordinary road Time interval value Clearance time accuracy No traffic regulation 	 Clearance time Distance to accident site Fatal accident (info) Queue decreasing trend
/	On the way to expressway	 Distance to accident site Clearance time Alternative expressway Time interval value 	 Distance to accident site Time interval info Time interval value Clearance time
	On expressway	 1.Time interval value 2. Clearance time 3. Distance to accident site 4.Alternative routes/modes 	 Time interval info Time interval value Clearance time No fatal accident Distance to accident site

Acknowledgement

This study was fully supported by the joint research between Hiroshima University and the Chugoku Regional Branch, West Nippon Expressway Company Limited (West NEXCO), Japan. "Age-Friendly Safety and Welfare in Transportation"

Impacts of urban planning & transportation on healthy ageing

Dirk Saarloos, PhD MSc BBE Adjunct Research Fellow School of Population Health The University of Western Australia

Outline

1. Ageing & health promotion

2. The built environment & health

3. Needs of elderly people

1 Ageing & Health Promotion

Population Ageing (2010-2050)

Ageing & Healthcare Costs

Total expenditures by age group (billions)

Healthy Ageing

- As people age, they become more susceptible to disease and disability. But much can be prevented, delayed or treated by adopting healthier lifestyles
- Healthy Ageing
 - Extend healthy life years
 - Live independently
 - Reduce risk of falling
- Lifestyle behaviors
 - Nutrition
 - Substance use/misuse
 - Physical activity

Promotion of Physical Activity

- Lower risk of
 - Early death
 - Heart disease
 - Stroke
 - High blood pressure
 - Diabetes
 - Colon & breast cancer
- Prevent obesity
- Reduce risk of falls
- Reduce depression

Physical Activity Guidelines

Source: American College of Sports Medicine & American Heart Association (2007)

Minimum recommendations (elderly)

5x per week 30 min. moderate-intensity physical activity

- noticeably accelerated heart rate (5 or 6 on a scale o-10)
- e.g., brisk walking

OR

- 3x per week 20 min. vigorous-intensity physical activity
 - rapid breathing and substantial increase in heart rate (7 or 8)
 - e.g., jogging

PLUS

exercise for muscular strengthening, flexibility, balance & coordination, and cognitive tasks

Promotion of Walking

Natural activityOutdoors

Walking for transportation

Walking for recreation

Values of Walking vs. Driving

2 The Built Environment & Health

Focus of Research

- "The neighborhood"
 - People's homes
 - Social community

Measurement

Walkability

- Measure of the walking-friendliness of an area
- Safety, comfort and convenience

Levels of Physical Activity

- Sufficient
- Insufficient
- Sedentary (inactive)

FINDING 1 Mixed Land-Use

- People need destinations within a <u>walkable distance</u> from their homes
- Diversity of destinations
 - Shops
 - Services
 - Parks & open public spaces
 - Public transport stops
 - Schools & workplaces

http://www.walkscore.com/

FINDING 2 Residential Density

 Local businesses need enough potential customers in their "trade area"

Higher densities allow better public transport service

FINDING 3 Street Connectivity

- Directness of travel
- Route options
- Linkage with public transport
- Safe crossings at intersections

Places to be reached within 15 minute walking

Distance home – school

FINDING 4 Walking Infrastructure

- Availability
- Comfort
- Safety
- Attractiveness

FINDING 5 Urban Green Space

- Health benefits
 - Stress relief by exposure to nature
 - Opportunities for physical activity and social interaction

FINDING 6 Safe & Clean Environment

- Perceived safety
 - Social safety
 - Traffic safety

Cleanliness

IN SUM The Built Environment...

- Influences choice behavior
 - Transportation
 - Leisure activities

- Needs to provide opportunities to be active
 - Meaningful nearby destinations
 - Attractive routes (safe, comfortable & clean)
 - Access to well-serviced public transport

Elderly People in Traffic

- Age-related factors
 - Decline in vision acuity
 - Slower reaction time
 - Slower walking speed
 - Fear of falling
 - More vulnerable in crashes

- Unsupportive environments
 - Hamper independent living (ageing-in-place)
 - Increase risk of social isolation

Perceived Barriers to Walking

- Walking distance to destinations
- Physical strain of walking
- Poor sidewalk conditions
- Lack of resting places along routes
- Dangerous intersections (crossings)

Streetscape Improvement

Priorities

- Improve conditions for walking (+cycling + public transport)
- Create 'quality places' that are inviting and safe

Elements

- Road cross-sections
- Traffic management
- Sidewalk conditions
- Landscaping
- Street furniture
- Building fronts

Safer Environments

- Sidewalks & footpaths
 - Quality & maintenance of pavement
 - Surveillance ('eyes on the street')
- Crosswalks
 - Shorter crossing distances
 - Longer pedestrian intervals
- Law enforcement
 - No parking on sidewalks
 - No parking around crosswalks

Closing Notes

- It is not age alone but also a person's health status that affects transportation mode use, transportation problems, or personal mobility
- Environments that enable elderly people to stay more active and healthy can contribute to better health of the whole population

Thank you 갑사합니다

Improvement of Walking Environments for the Transportation Vulnerable

2013. 6.13

Jung-Beom Lee

Daejeon Development Institute

TABLE OF CONTENTS

I. Introduction

II. General

III. Problems and overseas cases

N. Improvement plans

V. Conclusions

Background

Definition

- Increase the interest of the pedestrian environment
- Generic term of transportation vulnerable: people who are the disabled, the elderly, pregnant women, children, and inconvenient to go
- The law concern about convenient movement of transportation vulnerable in Korea was Enforced in 2010
- In general: The transportation vulnerable
- USA: Elderly or disabled
- Now: The mobility handicapped (Including the elderly, pregnant women, children, person with the burden)

Background

• Progress of elderly												
(Unit												Init:%)
Year	1980	1990	1998	2000	2008	2009	2010	2018	2026	2030	2040	2050
Propor tion	3.8	5.1	6.6	7.2	10.3	10.7	11	14.3	20.8	24.3	32.5	38.2
Source An o Age A su	: The Nat aging s ed socie iper—a	tional St ociety ety: 14 ged sc	atistical : 7% % ociety:	Office 20%		2018 14.	Proporti over year 3% 2000 yea 7.2%	on of the per the age of	opulation f 65	2026 5	Vear %	

Improvement of Walking Environments for the Transportation Vulnerable

Background

Trend of	an aging po	opulation in e	each year))				
	Year		Year spent				
7%	14%	20%	7%→14%	14%→20%			
1970	1994	2005	24	11			
1864	1979	2018	115	39			
1929	1975	2028	46	53			
1942	2014	2032	72	18			
2000	2018	2026	18	8			
	Trend of 7% 1970 1864 1929 1942 2000	Trend of an aging pp Year Year 7% 14% 1970 1994 1864 1979 1929 1975 1942 2014 2000 2018	Trend of an aging population in e Year 7% 14% 20% 1970 1994 2005 1864 1979 2018 1929 1975 2028 1942 2014 2032 2000 2018 2026	Year Year 7% 14% 20% 7%→14% 1970 1994 2005 24 1864 1979 2018 115 1929 1975 2028 46 1942 2014 2032 72 2000 2018 2026 18			

Source: National Institute of Population and Social Security research

Improvement of Walking Environments for the Transportation Vulnerable

Background

Safety for transportation vulnerable

- Build a safe pedestrian environment for the elderly
- Elderly pedestrian casualty has been increased in all cities
- Pedestrian fatality account for 61% of all accidents
- Seoul: Elderly pedestrian accidents compared to 2008 was an increase of 163
- Elderly pedestrian fatality rates is doubled high more than the general population
- The number of children killed on the roads
- In OECD countries, Korea ranks highest in the number of traffic fatalities per 100,000 children (3.1 children, Japan: 0.9 child)
- Transportation policy for pedestrian vulnerable is an important issue. But it is hard to be improved due to lack of budget.

II General

Elderly traffic accident

• Traffic fatality of elderly aged over 65 in 2008

- Japan: 49.0%
- Iceland: 33.3%
- Korea: 29.6%

- Traffic fatality of elderly aged over 65 per 100,000 people in 2008
- Korea: 34.6 people
- More than three times high compared to average of OECD countries

Improvement of Walking Environments for the Transportation Vulnerable

II General

Children traffic accident

- Child casualty composition per grade
- Elementary fatality rate: 49%
- Injury rate: 46.8%

*The majority of pedestrian death occurs in walking

Improvement of Walking Environments for the Transportation Vulnerable

II General

Walking Casualty

Traffic accident by borough in Daejeon

- Pedestrian fatality of 7 metropolitan cities: 2,137 people
- Pedestrian injury in 2009: increased to 51,381people
- Pedestrian fatality and injury in Daejeon increased 67 and 1,415 people respectively
- The number of elderly pedestrian casualty increased in all metropolitan cities

Elderly and children pedestrian casualty													
	Pedestrian casualty				Child pedestrian casualty				Edenty pedestrian casualty				
	Fatality		Injury		Fatality		Injury		Fatality		Injury		
	608	609	608	609	608	'09	608	609	608	'09	608	'09	
Seoul	258	241	10,887	11,519	12	10	1,507	1,498	97	97	1,370	1,533	
Busan	111	128	3,659	4,019	4	6	544	537	35	49	559	582	
Daegu	94	92	3,042	3,141	5	3	519	523	38	38	457	502	
Incheon	78	87	2,876	2,885	2	1	507	449	38	29	344	364	
Guangju	69	49	1,724	1,879	1	2	352	359	30	30	229	246	
Daejeon	55	67	1,321	1,415	3	2	244	250	26	28	191	196	
Yulsan	48	54	1,152	1,145	3	1	232	192	16	22	131	134	
Total	2,137	2,137	48,688	51,381	90	96	8,798	8,616	903	952	7,181	7,832	
자료: 지역별 교통사고 통계, 도로교통공단													

II Problems and overseas cases

Child pedestrian characteristics and rick elements

Child pedestrian

- Child pedestrian characteristics
- Do not look around when crossing
- Follow other's jaywalking
- Only look at one side of crossing when they cross
- Expecting that the car will be stopped
- Break into a run as soon as the light turns green
- Stopping in the crossing road
- Waiting for the green signal from the road
- Examples of problems at a school zone
- No speed hump or bump
- No segregation between pedestrian and vehicle
- Child safety problem due to illegal parking

Development Institute

III Problems and overseas cases

Problem

School zone

No crash barrier and illegal parking

Inappropriate crash barrier

No color road pavement

Improvement of Walking Environments for the Transportation Vulnerable

III Problems and overseas cases

Overseas case

□ The New York City Pedestrian Safety Study & Action Plan, 2010

- New York: By 2030, NY DOT consolidates the speed regulation in order to reduce the traffic fatalities by half goal
- 2009 year in NY city is the safest year ever / Traffic fatality and pedestrian fatality decreased to 35% and 52%, respectively compared to the year in 2001
- 36% of accidents caused by driver negligence leads to pedestrian's death or serious injury
- \Rightarrow 27% of the accidents is the pedestrian deaths or injuries due to the driver's violation
- * 80% of pedestrian deaths or injuries occurred by a male driver
- Two-thirds of serious pedestrian accidents occurred in the main road
- From the main road, about 15% of the accidents happen, but 60% of the fatal accidents are occurred
- 2010-2011year plan
- Installation of pedestrian signal at 1,500 intersections
- Installation of 20mph zone to 60 mile length road in order to improve pedestrian safety

II Problems and overseas cases

Overseas case

Traffic policy for elderly pedestrians

NY Safe Routes to Seniors

- Background
- Transportation Alternative(TA) started 'Safe Routes for Seniors Campaign' for elderly pedestrians
- In 2008, TA started the <u>Safe Routes to Seniors project</u> with <u>NYC Department for</u> <u>the Aging</u> (focuses on the elderly pedestrian safety)
- Check lists
- not enough time to cross the streets
- broken or missing pedestrian ramps
- faded and hard-to-see markings
- turning vehicles failing to yield
- poor drainage or ponding in crosswalks

III Problems and overseas cases

Overseas case

Traffic policy for elderly pedestrians

The selection of pilot areas using GIS spatial analysis)

Senior Areas:

Queens

- Flushing*
- Jackson Heights
- Jamaica Hills
- Rego Park
- Sunnyside

Improvement of Walking Environments for the Transportation Vulnerable

*Pilot Area

III Problems and overseas cases

Overseas case

Traffic policy for elderly pedestrians

Measures

- Installing new or upgraded pavement markings
- High-visibility crosswalks
- Advance stop bars to encourage drivers to stop before a crosswalk rather than in it
- Narrow streets by reducing the number of vehicle lanes
- Various road facilities maintenance activities
 - 1. replacing missing roadway signs
 - 2. repairing broken curb ramps
- Leading Pedestrian Intervals(LPI), which activate a walk signal before vehicles

get a green light. So pedestrians can have a head start into a crosswalk
II Problems and overseas cases

Traffic policy for elderly pedestrians

• Safe streets for seniors

The areas for elderly pedestrian safety improvement

III Problems and overseas cases

Overseas case

Traffic policy for elderly pedestrians

Conclusion

- Install transport facilities and educate about transport safety to secure the
 - elderly pedestrian safety

Safe driving for pedestrian accident prevention

Improvement method for transportation vulnerable

Design for pedestrian safety

Secure pedestrian passage

Traffic Calming

Improvement of Walking Environments for the Transportation Vulnerable

Daejeon

Improvement method for transportation vulnerable

Design for pedestrian safety

Smart Crosswalk

- * LED bulbs installed in the vehicle stop line to increase the visibility
- LED bulbs was obtained approval from California Traffic Control Devices Committee(CTCDC) in 1999 and firstly installed at the intersection in California
- This can be helpful to reduce vehicle vs. pedestrian accident

Red light running

Improvement of Walking Environments for the Transportation Vulnerable

Jaeieon

Daejeon Development Institute

Improvement method for transportation vulnerable

Design for pedestrian safety

- Reduce the turn angle
- Driver reduces vehicle speed to turn right / pedestrian safety can be ensured
- Crossing distance is shorter and a sight distance between vehicle and pedestrian is improved

Improvement method for transportation vulnerable

Design for pedestrian safety

Marking at local street

Cross mark and flash light

Pedestrian-friendly design

Pedestrian-friendly design

Improvement of Walking Environments for the Transportation Vulnerable

Daejeon

Improvement of Walking Environments for the Transportation Vulnerable

Daejeon

Improvement method for transportation vulnerable

Design for pedestrian safety

Improve school zone

<Improve pavement marking>

<Color pavement at school zone>

<Crash barrier at school zone>

<Word legends on the pavement>

Daejeon

Improvement method for transportation vulnerable

Design for pedestrian safety

Improvement of Walking Environments for the Transportation Vulnerable

Daejeon

Improvement method for transportation vulnerable

Design for pedestrian safety

<Pedestrianfriendly sign>

<Conspicuous sign >

Daejeon

Development Institute

<Ensure nighttime visibility>

<Insert the word about fine>

<Install driver feedback sign>

Daejeon Development Institute

Improvement method for transportation vulnerable

Design for pedestrian safety

- Install lighting facility around crosswalk
- Install in-pavement flashing markers at accident-prone area, especially at night
- Install a red blinker ahead of the crosswalk / driver could easily recognize pedestrian crossing
- Remove obstacles at crosswalk
- Obstacles such as distribution boxes, streetlights, or trees around crosswalk could cause traffic accident because of obstructing of field of vision
- Install refuge island
- Refuge island with minimum dimension of 1.2-1.8m wide and 2.4-3.6m long
- Pedestrian accident reduced from 19% to 60% after installing the refuge island in NY city

Improvement of Walking Environments for the Transportation Vulnerable

Daeieon

Improvement method for transportation vulnerable

Design for pedestrian safety

Create database

 Create elderly accident database to manage the frequent accident area

Daejeon

Development Institute

2001~2006 Accident frequency of vehicle vs. pedestrian in Manhattan

V Conclusions

Conclusions

- Importance of Pedestrian-oriented transportation policies
- Create a barrier-free environment by improving the pedestrian environments for children and elderly pedestrian

Recommendations

- Sustainable study has to be performed to make barrier-free environment for transportation vulnerable
- Apply Various pedestrian-friendly design through traffic calming techniques
- Have long-term plan for pedestrian safety such as <u>Safe Routes to Seniors project</u>
- Make database about frequent accident area to improve pedestrian environment

VI References

References

- ONCHRP(2006), Improving Pedestrian Safety at Unsignalized Crossings, Transportation Research Board
- Morris County Division of Transportation (2006), Wharton Borough Safety Routes to School Program
- School Crossing Protection Committee (2011), Traffic Control Manual for School Crossing Protection
- Sadik-Khan, J. (2008), Reduced School Speed Limit Pilot Study-Parts I & II, New York City DOT
- Traffic Safety Toolbox: A guide for Teachers, New York City DOT
- Public Works Department Miami-Dade County(2011), Traffic Safety Plan for Elderly Pedestrians
- IRTAD http://cemt.org/IRTAD/Irtad_Database.aspx 2010.7
- OECD Statistics http://www.oecd.org/statsportal/0,3352,en_2825_293564_1_1_1_1_1_00.html 2010.7
 http://newurbannetwork.com/article/nys-complete-streets-bill-passes-unanimously-14898
- Complete Streets Policy Analysis 2010: A Story of Growing Strength (http://www.completestreets.org/webdocs/resources/cs-policyanalysis.pdf)

Thank You !

Discussion

Discussion

Chairperson

Prof. Myung Soo Kim, Hanbat National University

Commentators

Prof. Tae Yeon Jang, Jeonbuk National University
Prof. Moon Namgung, Wonkwang University
Prof. Soo Beom Lee, University of Seoul
Dr. Back Jin Lee, Korea Research Institute for Human Settlements
Dr. Wonchul Kim, Chungnam Development Institute

Thank you !

2013년 대한 교통학회 대전·충청지회 국제 워크숍 하 계 학 술 발 표 대 회

고령자 교통안전 개선방안 연구를 위한 전문가 토론회

1. 행 사 개 요

- 일 시 : 2013년 06월 13일(목요일) 15:30- 18:00
- 장 소 : 한밭대학교 산학협동관 s5동 108호
- · 주 최 : (사)대한교통학회 대전·충청지회
- · 주 관 : 충남발전연구원, 한밭대학교 건설환경조형대학
- 참석 및 초청대상 : 시민, 전문가, 공무원(지방자치단체), 학생 등

2. 세미나 프로그램

사회 : 김원철 박사 (충남발전연구원 책임연구원)

16:00 - 16:10 개회식

개회사 : 김명수 교수(대한교통학회 대전·충청지회장, 한밭대 교수) 축 사 : 박진도 원장(충남발전연구원장)

16:10 - 17:10 주제발표

주제발표 1. Post-accident adaptation behavior and dynamic travel information: A comparison between the elderly and non-elderly

Junyi Zhang(IDEC, Hiroshima University 교수)

주제발표 2. Impacts of urban planning & transportation on healthy ageing

Dick Saarloss(Univ. of Western Australia 연구위원)

주제발표 3. Improvement of Walking Environments for the Transportation Vulnerable 이정범 박사(대전발전연구원 책임연구위원)

17:10-17:20 **Coffee Break**

17:20- 18:00 토론및 질의 응답

좌 장 : 김명수 교수(한밭대학교 도시공학과 교수) 토론자 : 장태연 교수(전북대학교 도시공학과 교수) 남궁문 교수(원광대학교 토목환경공학과 교수) 이백진 박사(국토연구원 국토인프라본부 연구위원) 김원철 박사(충남발전연구원 책임연구원) 이수범 교수(서울시립대학교 교통공학과 교수)

18:10 폐 회