현안과제연구

2012. 7. 27.

영흥철강㈜의 보령시 유치에 따른 지역경제 파급효과 분석

연구수행 : 임재영

CDi 충남발접연구원

현안과제연구 2012. 7. 31.

영흥철강(주) 보령시 유치에 따른 지역경제 파급효과 분석

임 재 영 (지역경제연구부 책임연구원)

<차 례>

1. 분석 개요	1
2. 분석 모형	2
1) 효과 구분	2
2 분석 모형	4
3. 분석	11
1) 사업 개요	11
2 분석 결과	13
	45

영흥철강㈜ 보령시 유치에 따른 지역경제 파급효과 분석

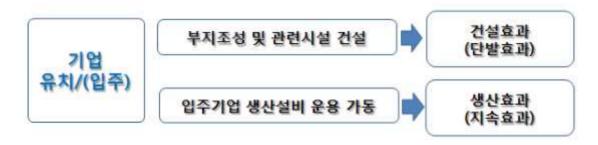
1. 분석 개요

- 이 과제는 경상남도 창원시 성산구에 입지해 있는 영흥철강(주)의 생산 설비 및 관련 부대시설이 충청남도 보령시 관창산업단지로 이전하게 됨에 따라 지역경제에 미치는 효과를 분석하는 것을 목적으로 함
 - 이전업체인 영흥철강(주)에 대한 일반현황은 <표 1>에 정리된 바와 같음

<표 1> 이전업체 영흥철강(주) 일반현황

회사 명		대표자			현	. 소 7	대 지	
영흥철강(영흥철강(주)		장 세 일		창원시	성산구	신촌동 71	-1
	자산 규모(억원)		종업원 -		[원)	투자 구	7모(억원)	
업 종	생	산품	수(명)	유동	비유동	부채	부지 매입	부지 매입
제조(철강)	와이어	거로프외	300	739	1,510	538	192	533

- 경제 파급효과의 추정에 일반적으로 적용되고 있는 방법론으로는 크게 경제기반모 형과 산업연관분석모형, 설문조사법, 계량경제모형, 연산일반균형 모형 등이 있음
 - 이들은 각기 장단점이 있으나, 여기서는 국가단위 또는 지역단위의 경제적 파급 효과 분석에 가장 널리 이용되고 있는 산업연관분석모형(input-output analysis model)을 적용하고자 함
- 산업연관모형을 이용한 분석결과의 특성 상, 본 연구에서는 경남 창원에서 충청남도 보령시 관창산업단지로 이전하게 되는 영흥철강(주) 유치에 따른 지역경제 파급효과를 생산유발효과와 부가가치 유발효과, 그리고 고용유발효과 등으로 구분하


여 이루어짐

- 그리고 공간적으로 이러한 경제적 파급효과는 충청남도와 충청남도를 제외한 기 타 지역으로 구분하여 분석이 이루어짐
 - ▶ 참고적으로 현실적으로 경제적 파급효과의 공간적 범위를 시군단위 이하의 소지역 으로 제시하는 것에는 무리가 있음
 - ▶ 경제기반모형(수출기반모형)을 제외하고, 경제 파급효과 분석에 널리 이용되는 산 업연관분석 모형의 적용시 이러한 특성은 더욱 두드러지게 나타남
 - ▶ 반대로 경제기반모형을 적용하는 경우에는 산업연관분석모형을 적용하는 경우에 비해 분석결과가 상당히 제한적일 수 있음(또는 추가적 가정이 필요함)

2. 분석 모 형

1) 효과 구분

○ 충청남도 보령시 관창산업단지로의 영흥철강(주) 유치효과는 다음의 (그림 1)과 같이 크게 건설효과와 생산효과로 구분될 수 있으며, 각각에 대한 구체적 설명은 다음과 같음

(그림 1) 지역 내 기업유치의 경제적 효과 구분

○ 먼저, 건설효과는 지역 내로 이전하는 기업들이 자신들의 생산활동을 위하여 생산 및 제조시설과 관련 부대시설 및 녹지공간 등의 확보를 위한 부지조성과 제반 시설 들의 건설비용 지출로부터 발생하는 효과임

- 여기서 유의해야 할 사항은 영흥철강(주)의 충남 이전과정에서 발생하는 개발사업(부지조성 및 제반시설 건설)이 종료되면, 이 건설효과는 되풀이 되지 않는 단발적인 효과라는 점임
- 그리고 영흥철강(주)이전과 관련된 부지조성 및 관련시설의 건설을 위해 소요되는 원자재(또는 중간투입물)의 조달을 사업 대상지인 보령시 내로 국한하는 것은 비현실적이라 할 수 있음
 - ▶ 따라서 건설효과가 미치는 공간적 범위는 보다 광역적이 될 수 밖에 없음
 - ▶ 특히 지역경제의 개방성(openness)을 전제할 때, 이 사업을 위해 소요되는 각종 건설 원자재 및 중간재는 충청남도를 포함한 충청권과 기타 비 충청권 지역들로부 터도 조달될 수 있음
- 반면 생산효과는 이 사업이 원래 의도하였던 바와 같이 영흥철강(주)이 공간적으로 충청남도 내에서 본격적으로 생산활동을 시작함으로써 나타나는 효과임
 - 부지조성 및 관련시설의 건설이 완료된 후 일단 기업들의 생산활동이 개시되면, 그로부터 발생되는 생산증가효과는 당해 기업이 생산활동을 중단하지 않는 한 지 속적으로 나타나게 됨
 - 따라서 생산효과는 공간적으로 주로 영흥철강(주)이 이전하는 보령시를 포함한 주변 지역 내에서 발생되는 효과라 할 수 있음
 - 특히 본 연구에서 다루어지고 있는 영흥철강(주)의 관창산업단지 이전은 충청남도 보령시 소재의 토지를 생산활동 과정에 투입하는 것이므로, 이 사업의 결과로 보령시를 포함한 당해 지역경제 내 해당산업의 생산증가를 직접적으로 기대할 수 있음
 - 즉, 이 사업으로 인한 생산효과가 보령시를 포함한 주변지역에 미치는 직접적이

며, 1차적인 효과라고 할 수 있음

- 건설효과와 생산효과를 합한 전체적 파급효과는 생산액과 부가가치, 그리고 고용 등의 측면에서 제시될 수 있음
 - 본 연구에서 사업 효과가 파급되는 공간을 기준으로 경제적 효과의 구분을 전제 하면 다음의 <표 1>과 같음

<표 1> 효과가 파급되는 공간적 범위에 따른 사업효과의 구분

		충닏	남 지역	기타 지역	
	구 분	보령시	보령시 제외 충남 전체	(충남 제외 전국)	비고
	생산유발효과	0	0	0	
건설효과 (B)	부가가치유발효과	0	0	0	직·간접 효과 단발효과
(-,	고용유발효과	0	0	0	
	생산유발효과	0	_	_	직접효과
생산효과 (A)	부가가치유발효과	0	_	_	
(///	고용유발효과	0	-	-	지속효과
	생산유발효과	0	0	0	
총 효과 (A+B)	부가가치유발효과	0	0	0	
/	고용유발효과	0	0	0	

2) 분석모형

- 본 연구에서 앞에서 설명한 효과들을 구체적으로 분석하기 위한 수단으로 지역 산 업연관분석모형(regional input-output model)을 채택함¹)
 - 지역 산업연관분석 모형을 통해 지역간 산업간 연간관계(inter-regional

¹⁾ 지역모형을 포함한 산업연관분석모형에 대한 구체적 설명은 Miller and Blair(1985)를 비롯한 국내외 다양한 문헌들에서 확인할 수 있음.

inter-industrial relationship)를 반영한 분석이 이루어질 수 있음

- 또한 지역경제를 구성하는 각 산업별 생산활동 과정의 특성을 반영할 수 있는 수 단으로서 지역산업연관분석 모형은 여러 분야에서 다양하게 적용되어 왔음
- 지역산업연관 모형은 크게 단일지역(single region) 모형과 다지역(many region) 모형으로 구분되며, 다지역 산업연관모형은 산업연관표의 작성방법에 따라 다시 지역간 모형(inter-regional model)과 다지역 모형(multi-region model)으로 구분 됨

○ 지역 산업연관분석 모형의 구조

- 지역 산업연관분석 모형의 구조는 (그림 2)에 제시된 지역 산업연관표의 구조에 대한 설명을 통해 확인 할 수 있음
 - ▶ (그림 2)는 Polenske(1980) 등이 제안한 다지역(multi-region) 산업연관모형을 기 준으로 작성된 것임
- 설명의 편의를 위해 국민경제는 r 과 s 의 두 지역경제로 구성되어 있으며, 두 지역 모두 n 개의 산업으로 구성되어 있다고 가정함

			중 간 수 요			최종수요	
· 투입		배분	지역 r	지역 s	지역	지역	총 산 출
			1 ··· j ··· n	1 ··· j ··· n	r	S	2
중 간	지 역 r	1 : : : :	$c_i^{rr} a_{ij}^r X_j^r$	${\cal C}^{rs}_i a^s_{ij} X^s_j$	$c_i^{rr}F_i^r$	$c_i^{rs}F_i^s$	X_i^r
빠 리	지 8F S	1 : : : :	$c_{\ i}^{\scriptscriptstyle{\mathbf{T}}}a_{\ ij}^{\scriptscriptstyle{\mathbf{T}}}X_{\ j}^{\scriptscriptstyle{\mathbf{T}}}$	$c_{i}^{\mathbf{s}}a_{ij}^{s}X_{j}^{s}$	$c_i^{sr}F_i^r$	$c_i^{s\!s} F_i^s$	$X_i^{\!\scriptscriptstyle S}$
	노동		$w_{\!j}L_{j}^{r}$	$w_j^s L_j^s$			
부가 가치	자		$r_j^r K_j^{\overline{r}}$	$r_{j}^{s}K_{j}^{s}$			
	토	XI	$h_j^x N_j$	$\mathit{Ir}^s_j \mathcal{N}^{\!\scriptscriptstyle E}_j$			
:	총투입		X_j^r	X_j^{s}			

⁻ \emph{c}^{rs}_i : 지역간 교역계수, \emph{a}^{r}_{ij} : 투입계수, \emph{F}^{r}_i : 최종수요, \emph{X}^{r}_i : 총산출액.

(그림 2) 지역 산업연관표의 구조: 다지역 투입산출모형(multi region model)의 경우

- 앞의 그림을 통해서 각 지역 내 각 산업의 산출량에 대한 균형방정식은 다음과 같이 나타낼 수 있음

$$X_{i}^{r} = c_{i}^{rr} \cdot a_{il} \cdot X_{l}^{r} + \dots + c_{i}^{rr} \cdot a_{ij} \cdot X_{j}^{r} + \dots + c_{i}^{rr} \cdot a_{in} \cdot X_{n}^{r}$$

$$+ c_{i}^{rs} \cdot a_{il}^{s} \cdot X_{l}^{s} + \dots + c_{i}^{rs} \cdot a_{ij}^{s} \cdot X_{j}^{s} + \dots + c_{i}^{rs} \cdot a_{in}^{s} \cdot X_{n}^{s}$$

$$+ c_{i}^{rr} F_{i}^{r} + c_{i}^{rs} F_{i}^{s} \qquad \qquad \cdots (1)$$

$$\begin{split} X_{i}^{s} &= c_{i}^{s} \cdot \mathscr{A}_{ll} \cdot X_{l}^{s} + \dots + c_{i}^{s} \cdot \mathscr{A}_{ij} \cdot X_{j}^{s} + \dots + c_{i}^{s} \cdot \mathscr{A}_{in} \cdot X_{n}^{s} \\ &+ c_{i}^{s} \cdot \mathscr{A}_{ll}^{s} \cdot X_{l}^{s} + \dots + c_{i}^{s} \cdot \mathscr{A}_{ij}^{s} \cdot X_{j}^{s} + \dots + c_{i}^{s} \cdot \mathscr{A}_{in}^{s} \cdot X_{n}^{s} \\ &+ c_{i}^{s} F_{i}^{s} + c_{i}^{s} F_{i}^{s} \end{split}$$

- 여기서 식(1)을 하나의 식으로 정리하면 다음과 같음

$$X_{i}^{r} = \sum_{r=1}^{m} \sum_{j=1}^{n} c_{i}^{rr} a_{ij}^{r} X_{j}^{r} + \sum_{r=1}^{m} c_{i}^{rr} F_{i}^{r} \qquad \cdots (2)$$

$$X_{i}^{s} = \sum_{s=1}^{m} \sum_{j=1}^{n} c_{i}^{s} a_{ij}^{r} X_{j}^{r} + \sum_{s=1}^{m} c_{i}^{s} F_{i}^{s}$$

- 식(2)를 벡터와 행렬의 형태로 나타내면 지역의 투입산출 체계(input-output framework)는 다음과 같이 표현됨

$$X = \begin{bmatrix} X^r \\ X^s \end{bmatrix}, \qquad X^r = \begin{bmatrix} X_1^r \\ \vdots \\ X_n^r \end{bmatrix}, \qquad F = \begin{bmatrix} F^r \\ F^s \end{bmatrix}, \qquad F^r = \begin{bmatrix} F_1^r \\ \vdots \\ F_n \end{bmatrix}, \qquad (2n \times 1) \qquad (2n \times 1) \qquad (n \times 1)$$

- n: 행렬과 벡터의 차수(여기서는 산업부문의 수) 가리킴

$$C = \begin{bmatrix} \widehat{C}^{r} & \widehat{C}^{s} \\ \widehat{C}^{s} & \widehat{C}^{s} \end{bmatrix}, \quad \widehat{C}^{r} = \begin{bmatrix} C_{i}^{r} & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & C_{i}^{r} & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & C_{n}^{r} \end{bmatrix},$$

$$(2n \times 2n) \qquad (n \times n)$$

$$A = \begin{bmatrix} A^r & 0 \\ 0 & A^s \end{bmatrix}, \quad A^r = \begin{bmatrix} a'_{11} & \cdots & a'_{1j} & \cdots & a'_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a'_{n} & \cdots & a'_{ij} & \cdots & a'_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a'_{nl} & \cdots & a'_{nj} & \cdots & a'_{nn} \end{bmatrix}.$$

$$(2n \times 2n) \qquad (n \times n)$$

- 그리고 식(3)은 다음과 같이 역행렬(inverse matrix)을 이용한 식의 형태로 다시

쓸 수 있음

- 식(4)는 지역 내에서 생산되는 재화나 용역에 대한 최종수요(final demand)의 변화가 지역 내 생산에 영향을 미치는 관계를 나타냄.

$$\Delta X = (I - CA)^{-1}C \Delta F. \qquad \cdots (5)$$

- 이렇게 분석된 생산액 변화를 바탕으로 부가가치와 고용에 미치는 효과는 산업별 부가가치 승수(value-added multiplier)와 고용 승수(employment multiplier)에 의 해 계산됨
- 부가가치 효과란 각 산업제품에 대한 최종수요의 변화가 지역 및 국민경제의 부가 가치액에 미치는 효과를 말하며, 이러한 부가가치 효과는 부가가치 승수에 의해 측 정됨
 - 여기서 부가가치 승수란 부가가치 계수 행렬에 승수행렬을 곱한 것을 말함
 - 그리고 이 때 부가가치 계수는 투입산출표의 산업별 부가가치액을 생산액으로 나 누어 준 값임

$$MVA = A V \cdot (i - CA)^{-1} \cdot C \qquad \cdots (6)$$

AV: 부가가치 계수행렬 $(Av_i$ 를 구성요소로 하는 대각행렬 (이 때, Av_i = VA_i/X_i)

MVA: 부가가치 승수행렬

- 따라서 부가가치 효과 (ΔVA) 는 다음과 같은 식으로 표현할 수 있음

$$\Delta VA = MVA \cdot \Delta FD$$
 ...(7)

- 고용유발효과란 각 산업제품에 대한 최종수요의 변화가 지역 및 국민경제의 고용에 미치는 효과를 의미함
 - 이는 지역별 산업별 고용자 투입계수와 승수행렬의 곱으로 구해지는 고용승수를 이용하여 측정됨

$$ME = EV \cdot (i - CA)^{-1} \cdot C$$
, ...(8)

EV: 고용자 투입계수 행렬 $(Ew_i$ 를 구성요소로 하는 대각행렬 (이 때 $Ew_i = E_i/X_i$, E_i : 산업 i의 고용자 수),

ME: 산업별 고용승수행렬

- 따라서 고용효과 (ΔE) 는 다음과 같은 식으로 표현할 수 있음

$$\Delta E = ME \cdot \Delta FD$$
 ...(9)

- 지금까지 설명한 수식들을 통해 최종수요의 변화에 따른 지역경제 파급효과는 구 체적으로 제시될 수 있음
 - ·여기서는 주로 이 사업의 사업비를 통해 발생되는 건설효과를 추계하는데 이용됨
- 건설효과 외에 생산효과의 추계에 대한 내용은 다음과 같음
- 기업유치로 인한 지역경제 내 생산증가 효과(즉, 생산효과)는 산업별 생산액과 그

생산을 위해 생산요소로 투입되는 토지나 노동력 등의 규모로부터 확인될 수 있음

- 구체적으로 산업별 토지이용과 생산액 사이에 일전한 관계가 있음을 전제한다면, 산업활동에 투입되는 토지면적의 변화로부터 발생되는 생산액 변화는 측정될 수 있음
- \bigcirc 먼저 산업별 생산액과 토지면적과의 관계를 나타내는 부지원단위 (n_i) 를 다음 식과 같이 전제하고, 그것이 일정함을 전제함
 - 이 부지원단위의 역수(= $1/n_i$)는 토지투입량계수로서 그 산업의 생산활동 과정에 필요한 토지의 규모를 나타냄

$$n_i = \frac{X_i}{N_i} \qquad \cdots (10)$$

 X_i : 산업i 생산액, N_i : 산업 i의 생산활동 과정에 투여된 토지면적

- 상기 식으로부터 산업 생산활동에 투입되는 토지이용 변화가 생산액에 미치는 영향은 다음과 같이 측정됨

$$\Delta X_i = n_i \cdot \Delta N_i \qquad \cdots (11)$$

- \bigcirc 이 외에도, 참고적으로 산업별 생산액과 그의 생산활동을 위해 투입되는 노동력 (즉, 고용규모)과 일정한 관계가 있음을 전제한다면, 이는 지역경제의 산업부문별 고용자 투입계수 $(Ew_i=E_i/X_i)$ 로 대변될 수 있음
 - 고용자 투입계수에 대한 구체적 설명은 앞서의 식(8)에 대한 설명에서 다루어짐
 - ▶ 앞서의 토지투입량계수와 유사하게, 이 고용자 투입계수는 그 산업의 생산활동 과

정에 필요한 노동력의 규모를 나타내는 것임

► 따라서 해당 산업부문의 고용자 투입계수가 주어진 경우, 계획된 고용규모 변화로 부터 발생되는 지역 내 생산액 변화는 추정될 수 있음

3. 분 석

1) 사업개요

- 경상남도 창원시에서 충청남도 보령시 관창산업단지로 이전하게 되는 영흥철강(주) 의 사업계획서 상에 제시된 사업내용을 정리하면 <표 2>와 같음
 - 단. 여기서 구체적인 투자 및 재원조달 계획은 생략함
- 앞에서 설명한 분석모형에 의거 지역경제 파급효과를 계산하기 위하여, 본 연구에 서는 한국은행(2009)에서 제시하고 있는 우리나라 경제를 16개 지역과 28개 산업부 문으로 구분한 지역산업연관표를 이용하고자 함
 - 고용자 투입계수의 적용을 위한 지역별 산업부문별 취업자 수는 동일하게 한국은 행(2009)의 고용표를 이용함
 - 이 외에도 토지 투입량계수를 작성하기 위해서는 통계청의 산업총조사 원자료를 활용함
 - ▶ 참고적으로 통계청에서는 2005년 후부터 산업총조사 자료 중 업종별 부지면적 자료를 공개하고 있지 않으므로, 현재 이용가능한 자료는 2005년 기준이 최신의 것임
 - ► 따라서 2012년 현재, 이 자료를 바탕으로 시군별 업종별 부지원단위를 적용하여 분석하는 것은 적절하지 않으므로 본 연구에서는 고용자 투입계수를 이용하여 영흥철강(주)의 보령시 이전으로 인한 생산효과를 계산함

<표 2> 충청남도 보령시로 이전하는 영흥철강(주)의 사업계획서* 요약

78	계획 고용인원	투자금액	부지면적 계	
구분 	(명)	(억원)	(m²)	
영흥철강㈜	2015년 이후 500**	725	217,456	
קוש	해당업종: 알루미늄 산업용소재			
 ul 1 7	※IO 산업분류기준: 제1차 금속제품 제조업			

- 자료: 충남도청, 내부자료.
- * 사업계획서의 세부내용은 생략함
- **: 현 고용규모 266명, <표 1>의 300명 중 서울사무소 근무자 34명 제외
- 이 외 업체에서 계획하고 있는 구체적인 투자계획과 고용계획은 <표 3>과 <표 4> 에 정리된 바와 같음

<표 3> 영흥철강㈜의 연도별 입지 및 설비투자계획

구분	2011년	2012년	2013년부터
부지매입*	192억		
건물		104억	206억
구축물		13억	27억
기계장치		60억	123억
정상가동 여부		일부가동	일부가동

- 자료: 충남도청, 내부자료.

<표 4> 영흥철강㈜의 연도별 고용계획

(단위: 명)

асн	₹7000		신규고용인원				
연도별	총고용인원	(소계)	정규	구직	협력업체	(공장 내)	
2012년	326	26		20	6		
2013년	368	42	3	30	9		
2014년	436	68	3	50	15		
2015년	516	80	3	60	17		
2016년	566	50	1	38	11		

⁻ 자료: 충남도청. 내부자료.

2) 분석결과

- 앞의 <표 2>와 <표 3>에 제시된 투자금액과 사업계획서 상의 투자내역을 통해 분석 된 건설효과 및 생산효과 결과는 다음과 같음
 - 단, 이전업체인 영흥철강(주)에서 계획하고 있는 장래 고용규모의 실현가능성에 대해서는 이견이 있을 수 있으므로, 여기서는 <표 5>와 같은 시나리오를 전제로 분석을 진행함

<표 5> 영흥철강㈜의 지역 내 고용규모에 대한 시나리오 설정

구분	지역내 고용규모	비고
scenario#1	현재 고용규모 300명 유지시	서울 사무소 34명
scenario#2	고용규모 500명	2015년 이후 계획

- 먼저 건설효과는 앞에서 설명한 바와 같이 단발적인 효과이며, 공간적으로는 보다 광역적으로 발생되는 효과라 할 수 있음
 - 그 결과는 <표 6>에 정리된 바와 같음

<표 6> 영흥철강㈜의 충남 보령시 유치의 경제적 효과: 건설효과

7 8	생 산 액 변 화	부가가치 변화	고 용 변 화
구 분 	(백 만 원)	(백 만 원)	(명)
충남	100,840	42,764	1,145
대 전	3,883	1,963	123
충북	2,669	892	65
(충청권 소계)	107,392	45,528	1,333
기타 지역	78,072	26,972	1,783
(전국 합계)	185,464	72,500	3,116

○ 그리고 생산효과는 앞에서 설명한 바와 같이 영흥철강㈜이 보령시로 이전함으로써 발생되는 직접적인 효과라 할 수 있으며, 그 결과는 <표 7>에 정리된 바와 같음

<표 7> 영흥철강㈜ 충남 보령시 유치의 경제적 효과: 생산효과*

구분	scenario#1	scenario#2
생 산 액 변 화 (백 만 원)	191,059	364,861
부 가 가 치 변 화 (백 만 원)	34,410	56,762
고 용 변 화 (명)	266	500

^{*:} 이 효과는 주로 사업장이 위치한 지역에서 지속적으로 발현되는 효과임.

■ 참고문헌

한국은행(2009), 「지역 산업연관표」.

Polenske(1980), The U.S. Multi-regional Input-Output Accounts and Models

Miller and Blair91985), *Input-Output Analysis: Foundations and Extensions*. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.