

물 재이용 기술동향 및 적용시 고려사항

이 원 태 하국건설기술연구원

1. 어떤 물을 마시겠습니까?

2. 어떤 물을 마시겠습니까?

수도물

재생수(하수재이용수)

어떤 물을 마시겠습니까?

수도물

재생수

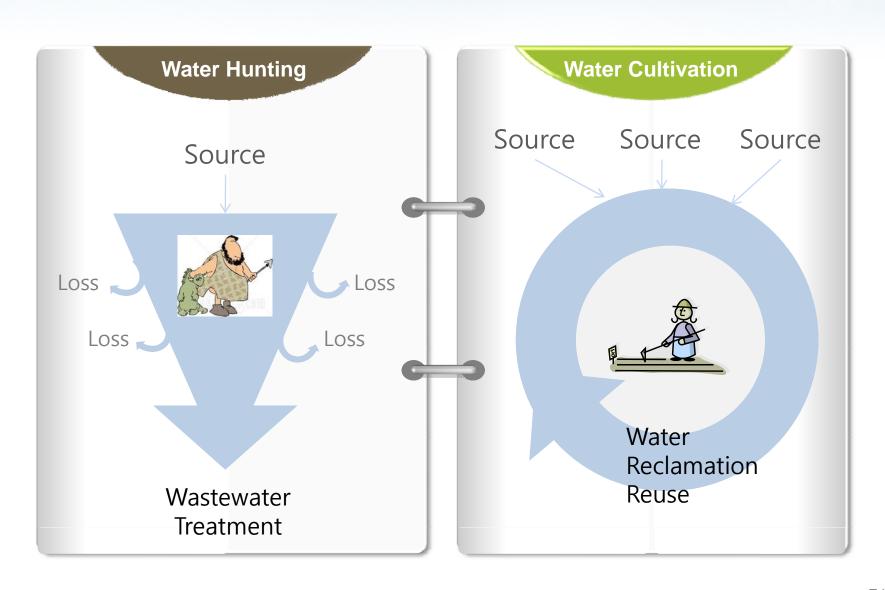
물 수요관리의 중요성

>>

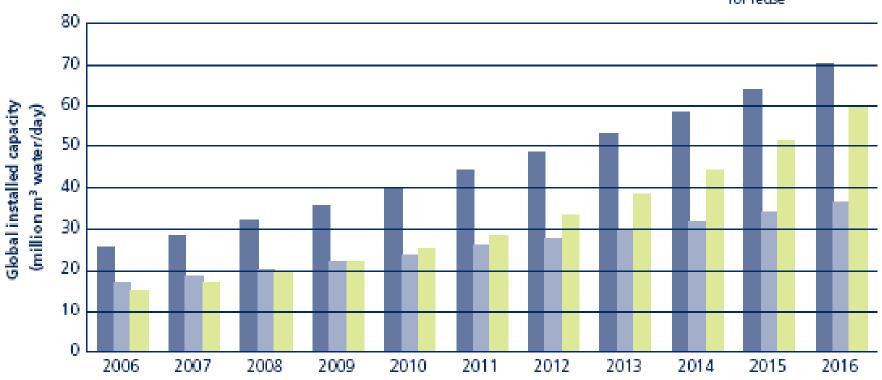
물 재생 및 재이용 기술 동향

물 재이용시 고려사항

기후변화와 물 문제


- 기후 변화 및 수자원 사용량 증가
 - 지구온난화
 - 가뭄
 - 급격한 인구 증가

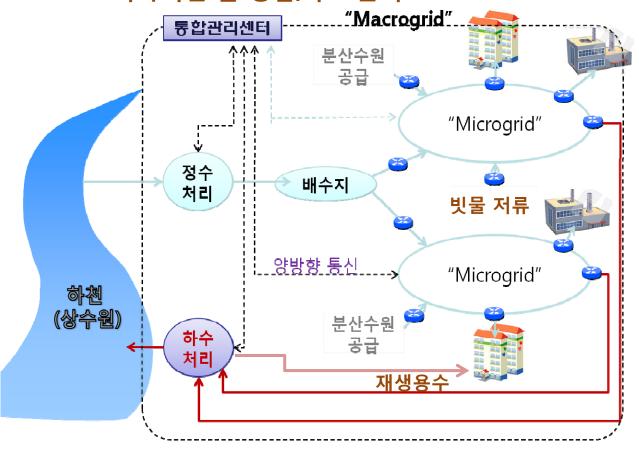
- 세계 물 부족 인구 (UN World Water Report, 2004)
 - 2004년 기준 약 10억 명
 - 2025년 25억 명
- 지속가능 수자원확보기술 개발 시급
 - 물 재이용
 - 해수 담수화



물 공급/수요 패러다임의 변화

대체 수자원 개발 - 다중 수원

- Desalination using membrane technology
- Thermal desalination
- Wastewater treatment for reuse

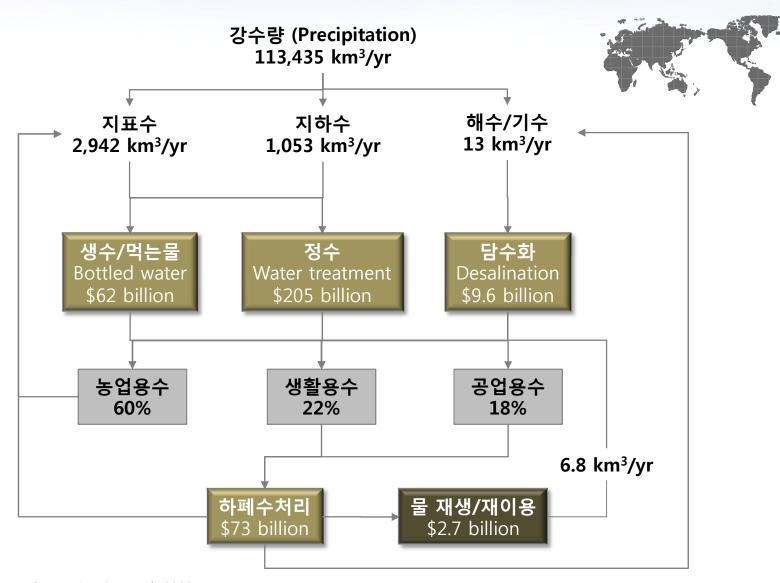


Source: Global Water Intelligence: Global Water Market 2008

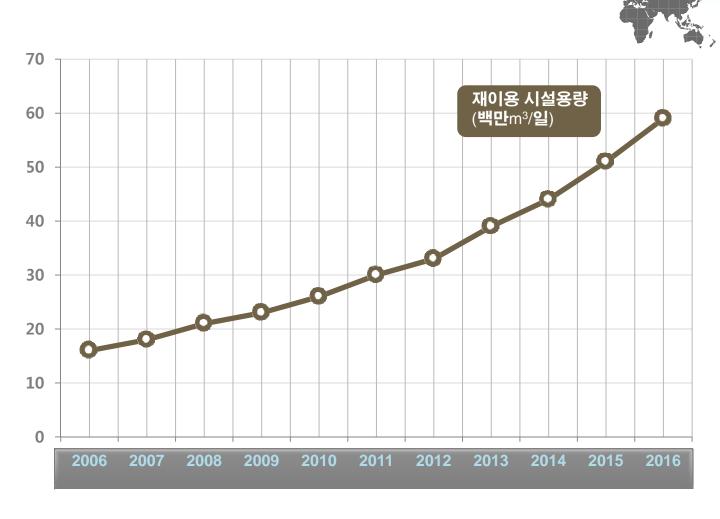
스마트 워터 그리드 - 통합 물 순환 관리

Smart Water Grid

지속적인 물 공급/수요관리


물 수요관리 방안

- ▶ 먹는 물을 제외한 다른 용도로 이용하는 방안 강구
- ▶ 먹는 물을 제외한 다른 용도로 이용하는 방안 강구
- ▶ 절수기기 보급 및 사용 권장
- ► 물 재생/재이용, 빗물 이용, 절수기기 보급 등과 같은 수요관리정책 (물 낭비요인 제거)
- ▶ 1인당 물 사용량을 줄이는 것이 물 공급량을 늘리는 것과 같은 효과


- 공공건물, 대형건물 우선 설치
- 시민을 대상으로 물 수요관리에 대한 지속적인 교육 및 홍보 필요

물 재생/재이용 현황 (시장, 사용량)

Source: Lux Research 2008

물 재생/재이용 성장 전망

국내 하수처리수 재이용 현황

환경부, 하수도통계 2008

■하수처리량: 66억톤/년

■재이용량: 7.1억톤/년

(10.8%)

장내용수 (천m³/년)									
계	계 세척수 냉각수 청소수 식수대 희석용수 장내 중수도 장내 기타용수								
401,541	401,541 155,727 61,066 37,936 2,928 8,895 1,429 133,559								

장외용수 (천m³/년)							
계	계 장외 중수도 공업용수 농업용수 하천 유지용수 장외 기타용수						
310,478	1,654	15,045	60,840	213,537	19,402		

물 재생/재이용 기술의 발전

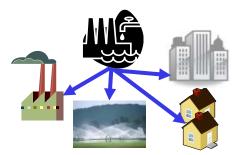
Potable

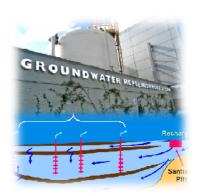
1st Generation

- •하수처리장 처리수
- •처리수를 골프장 등 관개용수로 이용

2nd Generation

- •물재생시설
- •재생용수용 관로로 배급수
- •오접방지 프로그램
- •공공교육 프로그램


3rd Generation


- •맞춤형/분산형 물 재생시설
- •용도별 맞춤형 재생용수 보급
- •용도별 분리 관로

4th Generation

- •음용수용 재이용수 생산시설
- Singapore
 Public Utilities
 Board
 (NEWater)

수요 맞춤형 물 재생기술 구분

외국사례: 용도에 따라 크게 3가지로 구분

구분	저급재생처리	중급재생처리	고도재생처리
대표적 용도	•하천유지 용수 •청소용수 •관개용수 소량보충	•비접촉 생활용수 •청소용수 •관개용수	•지하수 충진 •음용수자원의 보충 •습지 보충수
처리 목적	●유기물/부유물질 제거 ●소독	•영양소(N, P) 제거 •유기물/부유물질 추가 제거	●영양소(N, P) 최대 제거 ●미량물질 제거
처리 공정	•2차 처리 + 소독	•N, P제거 + 3차 처리 •MBR + N, P제거	•분리막 + AOP 추가

용도별 물 재생 공정 예시

환경부, 하수처리수 재이용 가이드 (2009)

구분 세부구분		처리방법(예시)		
	청소용수	모래여과		
	도시조경용수	모래여과		
범용 재이용수	친수용수	모래여과+활성탄		
	하천유지용수	모래여과, MF		
	관개용수	모래여과, MF		
인체접촉 및 직접	인체접촉세척용수	MF + R/O 생물반응조 내 침지막 + R/O		
영향 재이용수	직접관개용수	MF + R/O 이상		
	습지용수	모래여과 + 활성탄, MF + R/O 생물반응조 내 침지막 + R/O		
고도환경용수	지하수 충진	모래여과 + 활성탄, MF + R/O 생물반응조 내 침지막 + R/O		
	음용수자원보충	MF + R/O 생물반응조 내 침지막 + R/O		
공업용수		6가지 조합 모두 가능		

물 재생 기술

State of California, Department of Public Health (2009)

Treatment
Technology Report
for Recycled Water

<u> 여과 기술</u>

- 입상여재 (Granular Media)
- 막여과 (Membrane Filtration)
- 여과포 (Cloth Filter)

<u>소독기술</u>

- 자외선 (UV)
- 저온살균 (Pasteurization)
- 오존/과산화수소

막여과 (Membrane Filtration)

미국 캘리포니아주 인증 막여과 공정

- GE ZeeWeed 500: Polyvinylidene fluoride(PVDF) 중공사막, 침지형
- GE ZeeWeed 1000: 0.02 µm PVDF 중공사막, 침지형
- Memcor-M10V, L10V, L20V: 0.1 µm PVDF 중공사막, 가압형
- Memcor-S10V: 0.1 µm PVDF 중공사막, 침지형
- Memcor-M10B, M10C: 0.2 µm polypropylene 중공사막, 가압형
- Memcor-S10T: 0.2 µm polypropylene 중공사막, 침지형
- Memcor-B10R, B30R, B40N: 0.1 µm PVDF 중공사막, 침지형
- Microza P/N XUSV-5203: 0.1 µm PVDF 중공사막
- Microza P/N USV-5203, USV-6203, UNA-620A, UNA-620A-1
- Mitsubishi MBR: 0.4 µm polyethylene 중공사막
- Kubota MBR: 0.4 µm chlorinated polyethylene 평막
- Norit X-Flow S225: 0.05 µm polyethersulfone 중공사막
- Puron: 0.05 µm polyethersulfone 중공사막, 침지형
- Vacuum Rotation Membrane: 0.038 µm polyethersulfone 평막, 침지형
- Dynalift: 0.03 µm PVDF tubular막, 가압형
- IMAS:0.05 µm polyethersulfone 나선형막
- Metawater Ceramic Membrane: 0.1 µm 세라믹막, 가압형
- Asahi-Kasei MUNC-620A, MUDC-620A: 0.1µm PVDF 중공사막, 침지형
- Norit Xiga, Aquaflex: 0.025 µm polyethersulfone 막, 가압형
- HYDRAcap UF: 0.2 µm polyethersulfone 중공사막
- HYDRAsub/MRE Sterapore SADF MBR: 0.4 µm PVDF 중공사막
- Dow SFX2860, 2880: 0.03 µm PVDF 중공사막
- Toray MEMBRAY: 0.08 µm 평막, 침지형
- Sumitomo Poreflon: 0.2 µm 중공사막
- Dynatec Dynalift MBR: 0.03 µm tubular막, 가압형
- WesTech Clearlogic MBR: 0.2 µm PVDF 중공사막, 침지형

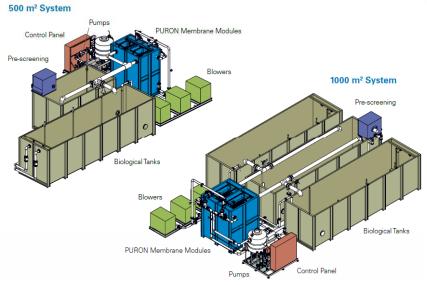
MBR (Membrane Bioreactor)

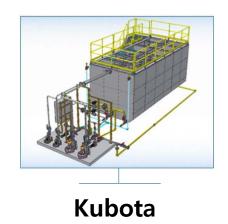
MBR 시설 설치현황

(자료: Yang et al, 2006)

제조업체	전세계	미국	
GE (Zenon)	331 (204 + 127) ^a	155 (132 + 23)	
Siemens (US Filter)	16 (15 + 1)	13 (13 + 0)	
Kubota	1538 (1138 + 400)	51 (48 + 3)	
Mitsubishi-Rayon	374 (170 + 204)	2 (2 + 0)	
Total	2259 (1527 + 732)	221 (195 + 26)	

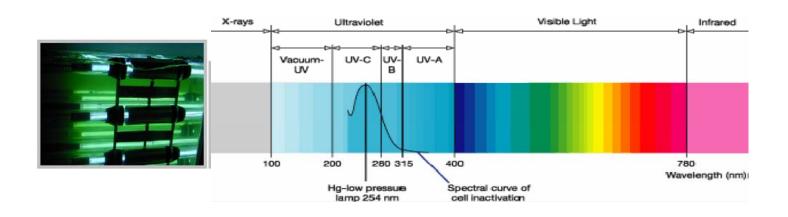
주: 이 (도시하수처리장 + 산업폐수처리장)





Package MBR

Koch PURON Plus



Siemens Xpress

자외선 (UV) 램프

인자	저압/저강도	저압/고강도	중압/고강도
적용압력 (mm Hg)	10 ⁻³ – 10 ⁻² (진공)	10 ⁻³ – 10 ⁻² (진공)	10² – 10⁴ (대기압)
램프 표면온도 (℃)	40 – 50	90 – 250	600 – 800
수은의 상태	부분적 증기상태	부분적 증기상태	완전한 증기상태
지이셔 스펙트럼	단색성	단색성	다색성
자외선 스펙트럼	253.7 nm	253.7 nm	250 – 290 nm
입력 전력 (W)	75	190 – 1,620	1,250 – 5,000
자외선 출력 (W)	26.7	40 - 500	87.5 – 750
램프 수명 (시간)	8,000 – 13,000	5,000 - 12,000	3,000 - 8,000
처리시설 규모	소, 중규모	소, 중, 대규모	중, 대규모

자외선 (UV) 소독

캘리포니아주 인증 UV공정

- Trojan UV4000
- Trojan UV3000
- Trojan UV3000+
- Specktrotherm 33-TAK UV
- Wedeco LCI-20L
- Wedeco TAK 55
- Wedeco TAK 55HP
- Wedeco LBX 1000
- Wedeco LBX 400
- Wedeco LBX 90
- Aquionics
- ULTRAGUARD UV System
- Aquaray 40 VLS
- Aquaray 40 HO VLS
- Aquaray 3X HO
- Terminator
- OCS 6000 Microwave UV

Trojan UV4000

Aquionics InLine

물 재이용 계획 및 적용시 고려사항

- •사용용도, 수요량
- •목적에 맞는 수질

•비상 용수공급라인

재이용 사업자

•물 재생시설의 위치 및 규모

- •경제성
- •사적/사회적 편인

•발생폐수 처리대책

- •오접방지 대책
- •기존 시설과의 연계성

재이용수 수질

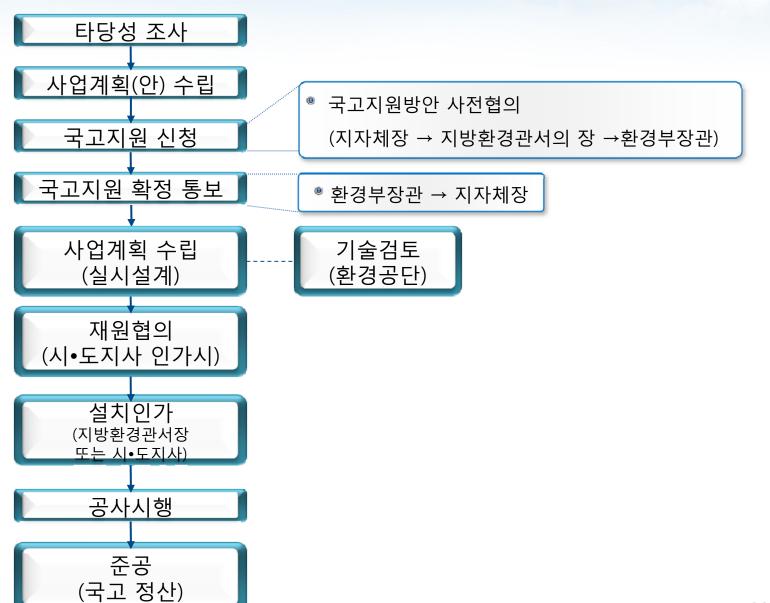
용도별 하수처리수 재이용 수질권고기준

농업용수¹⁾ 조경용수 친수용수 습지용수 공업용수3 재이용수 유지용수 총대장균 직접식용 불검출 ≤ 1000 불검출 군수 불검출 불검출 ≤ 200 (7H/100mL) 결합잔류 (mg/L) 직접식용 탁도 ≤ 2 ≤ 10 ≤ 2 ≤ 2 ≤ 2 (NTU) 간접식용 (mg/L) ≤5 ≤ 8 ≤5 (mg/L) 불쾌하지 불쾌하지 않을 것 ≤20 ≤ 10 \leq 20 T-N ≤ 10 ≤ 10 ≤ 10 (mg/L) T-P ≤ 0.5 ≤ 0.5 (mg/L) рΗ 5.8~8.5 5.8~8.5 5.8~8.5 5.8~8.5 5.8~8.5 염화물 ≤ 250 ≤ 250 ≤ 250 ≤ 250 (mgCl/L)

중수도의 수질기준 (하수도법 시행규칙 제20조)

구 분	수세식화장실용수	살수용수	조경용수	세차·청소용수
대장균군수	불검출/100mL	불검출/100mL	불검출/100mL	불검출/100mL
잔류염소(결합)	0.2mg/L 이상 일것	0.2mg/L 이상 일것	_	0.2mg/L 이상 일것
외 관	이용자가 불쾌감을 느끼지 아니할것	이용자가 불쾌감을 느끼지 아니할것	이용자가 불쾌감을 느끼지 아니할것	이용자가 불쾌감을 느끼지 아니할것
탁도	2NTU를 넘지 아니할 것	2NTU를 넘지 아니할 것	2NTU를 넘지 아니할 것	2NTU를 넘지 아니할 것
생물화학적 산소요구량 (BOD)	10mg/L를 넘지 아니할 것	10mg/L를 넘지 아니할 것	10mg/L를 넘지 아니할 것	10mg/L를 넘지 아니할 것
냄 새	불쾌한 냄새가 나지 아니할 것			
рН	5.8~8.5	5.8~8.5	5.8~8.5	5.8~8.5
색 도	20도를 넘지 아니할 것			20도를 넘지 아니할 것
화학적 산소요구량 (COD _{Mn} 기준)	20mg/L를 넘지 아니할 것	20mg/L를 넘지 아니할 것	20mg/L를 넘지 아니할 것	20mg/L를 넘지 아니할 것

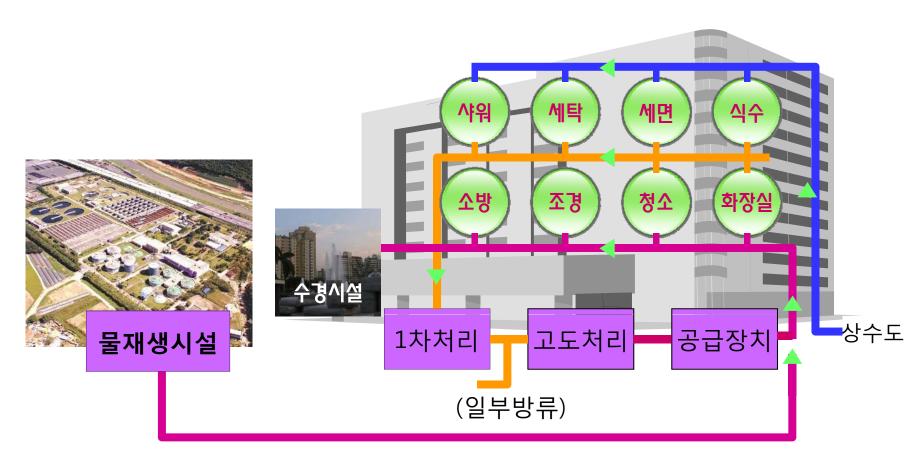
물 재생/재이용 시설의 비용

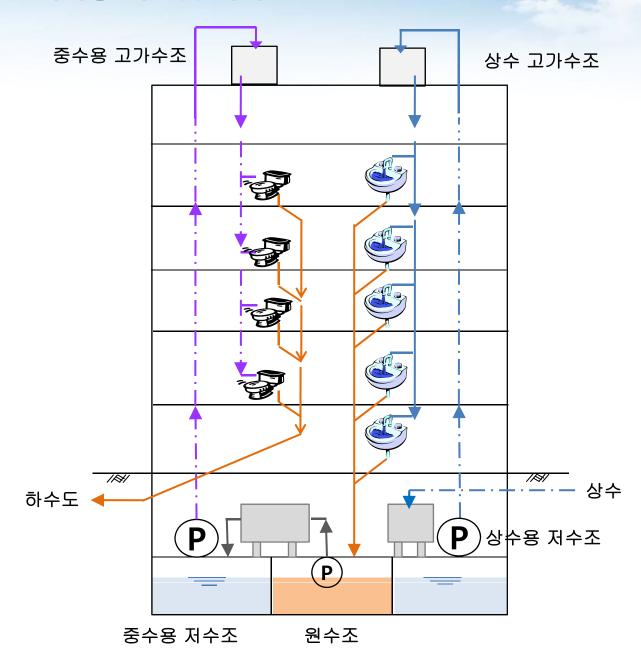

설치비용

- 원수로 및 원수공급 펌프 시설비
- 각종 처리 시설비
- 염소처리 시설비
- 저수조 시설비
- 급·배수 처리 시설비
- 슬러지 처리·처분 시설비

유지·관리 비용

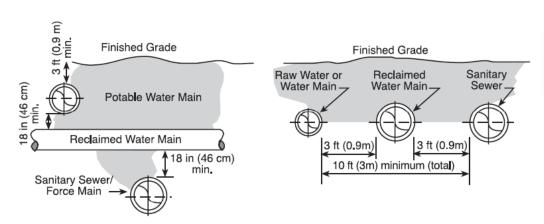
- 전력비
- 약품비
- 인건비
- 수리비 및 기타 제경비


물 재이용사업 추진 흐름도 지방자치단체의 장이 시행하는 사업


재생용수 공급방법

■ 광역 중수도 : 하수종말처리장/물재생시설 재생수를 공동 중수도로 공급

■ 개별 중수도 : 건물 혹은 공동주택에 개별 중수도 설치 후 사용



개별건물 물 재이용 시스템 예시

오사용/오접 방지

- 별도 배관이 필요
- 오접을 방지해야 함

원수의 수질 및 수량 변동

- 안정적인 처리수 수질
 - 활성슬러지법은 유입수의 수질 및 수량의 부하변동에 약함
- 예비 시스템 필요
 - 한 장치가 고장이 나거나 문제점이 생기면 전체 설비장치가 상당기간 작동이 중지되고, 문제점을 해결하기 까지 물이 고여있는 상태로 썩을 수 있음
- 잦은 운전 중단 방지
 - 배관내의 용존산소량 증가로 부식발생
 - 물이 시스템 내에 정체되며 부패할 가능성이 높음
 - 수질 악화
- 습기와 냄새처리가 용이한 구조로 설계

안정적 수량확보

재이용 시설 운영시 고려사항

저장시설

- 저장조 바닥에 침전물이 발생되지 않도록 주기적으로 확인, 제거
- 외부로부터의 오염방지, 누수방지, 청소 필요
- 재이용수 급수량의 시간적 변화에 대응 가능하고, 동시에 세척수량을 공급할 수 있는 용량을 가져야 함
- 개방식의 경우 조류가 발생하는 경우가 있으므로 유의

재이용 시설 운영시 고려사항

설비 및 기기 보수점검

- 침전물의 부착이나 퇴적 등을 정기적으로 점검, 청소
- 전기 및 계측제어설비 : 수위계,
 유량계, 밸브류 등의 주기적인 점검과 정비 필요
- 수위가 작동레벨임에도 불구하고 자동 작동하지 않을 경우 발생
- 초기 시설투자비가 많이 들더라도 유지관리가 간단한 공정을 선정

재이용수에 대한 거부감

부정적 브랭딩

- ■하수 재이용
- Toilet to Tap

교육 및 홍보

용어 사용의 중요성

● 하수재이용, 중수도→ 물 재생, 물 재이용, 재생수

긍정적 브랜딩

■ Toilet to Tap
→ NEWater (싱가포르의 예)

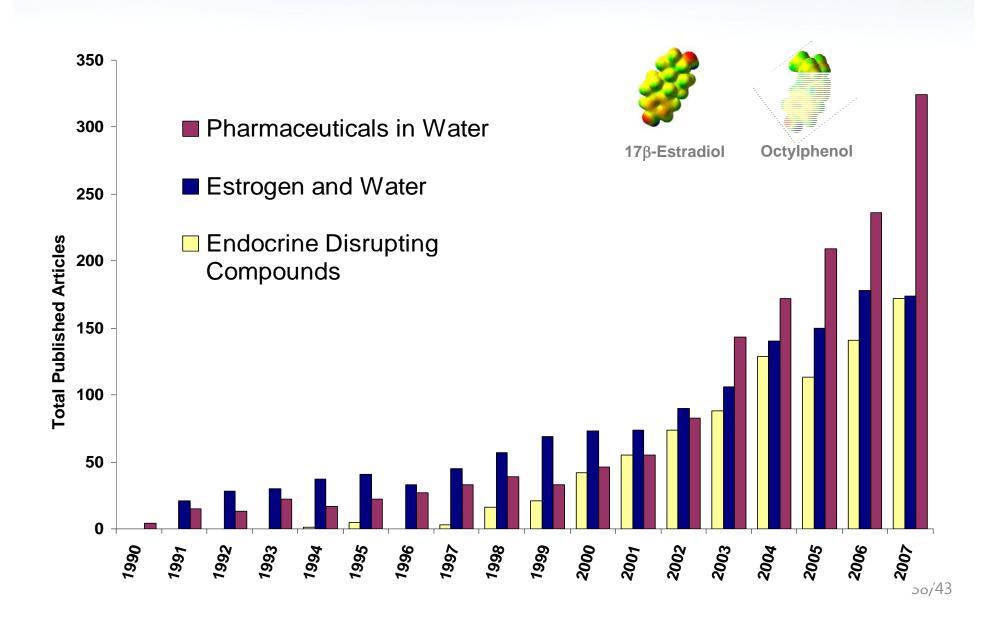
미량오염물질 (EDCs, PPCPs)

EDCs: Endocrine Disrupting Compounds

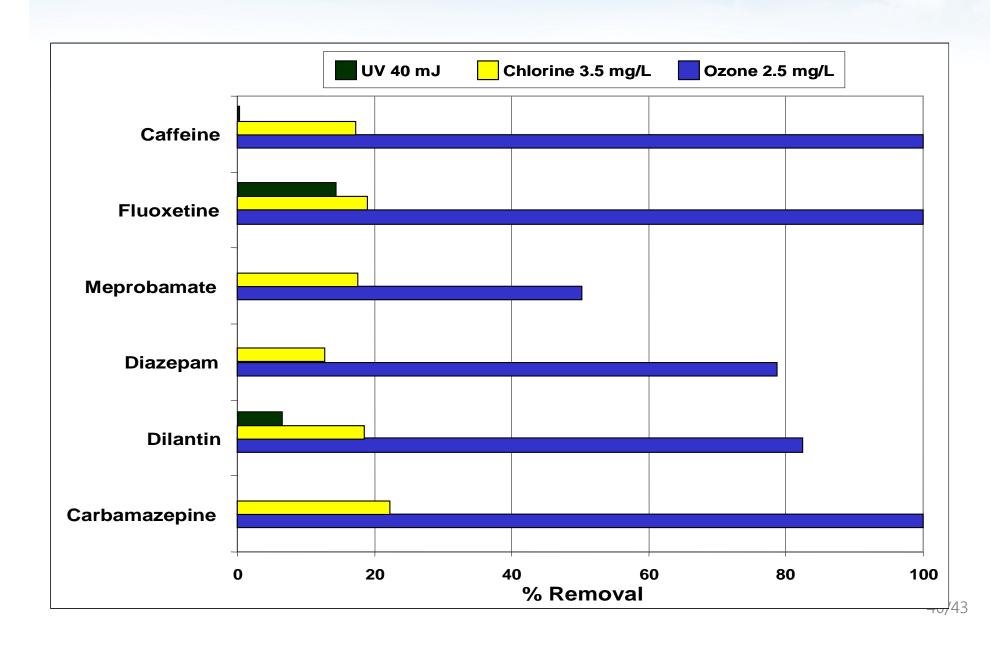
PPCPs: Pharmaceuticals and Personal Care Products

미량오염물질 (EDCs, PPCPs)

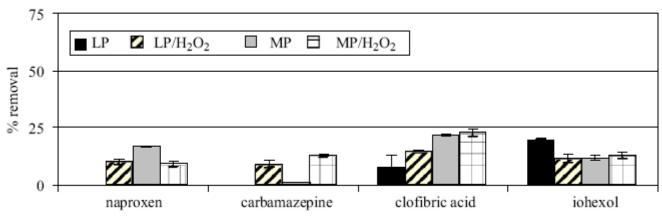
커피 1잔 (17 ng/L, 240 mL) 4 ng caffeine



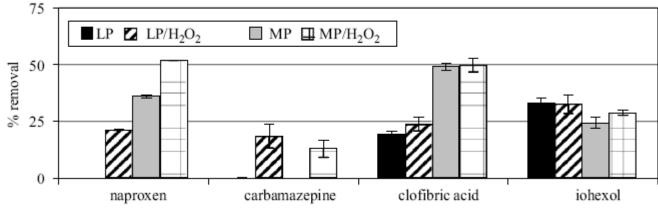
5.8-L Secondary Wastewater (0.7 ng/L)


미량오염물질 관련 연구

RO Feed와 Permeate EDCs, PPCPs 비교


Description	RO	RO 1	RO 2	RO 3	RO 4
-	Feed	Permeate	Permeate	Permeate	Permeate
Analyte	ng/L	ng/L	ng/L	ng/L	ng/L
Hydrocodone	49.5	<1.0	<1.0	<1.0	<1.0
Trimethoprim	227	<1.0	<1.0	<1.0	<1.0
Acetaminophen	<20	<1.0	<1.0	<1.0	<1.0
Caffeine	<200	<10	<10	<10	<10
Erythromycin-H ₂ 0	224	<1.0	<1.0	<1.0	<1.0
Sulfamethoxazole	584	<1.0	<1.0	<1.0	<1.0
Fluoxetine	30	<1.0	<1.0	<1.0	<1.0
Pentoxifylline	<20	<1.0	<1.0	<1.0	<1.0
Meprobamate	200.5	<1.0	<1.0	<1.0	<1.0
Dilantin	211.5	<1.0	<1.0	1.0	<1.0
TCEP	215	<10	<10	<10	<10
Carbamazepine	300	<1.0	<1.0	1.1	<1.0
DEET	172	<1.0	<1.0	1.2	<1.0
Atrazine	<20	<1.0	<1.0	<1.0	<1.0
Diazepam	<20	<1.0	<1.0	<1.0	<1.0
Oxybenzone	<20	<1.0	<1.0	<1.0	<1.0
Estriol	<100	<5.0	<5.0	<5.0	<5.0
Ethynylestradiol	<20	<1.0	<1.0	<1.0	<1.0
Estrone	32	<1.0	<1.0	<1.0	<1.0
Estradiol	<20	<1.0	<1.0	<1.0	<1.0
Testosterone	<20	<1.0	<1.0	<1.0	<1.0
Progesterone	<20	<1.0	<1.0	<1.0	<1.0
Androstenedione	<20	<1.0	<1.0	<1.0	<1.0
lopromide	521	1.0	<1.0	<1.0	<1.0
Naproxen	84	<1.0	<1.0	<1.0	<1.0
lbuprofen	23	<1.0	<1.0	<1.0	<1.0
Diclofenac	51.5	<1.0	<1.0	<1.0	<1.0
Triclosan	<20	<1.0	<1.0	<1.0	<1.0
Gemfibrozil	529	<1.0	<1.0	<1.0	<1.0

산화공정별 EDCs, PPCPs 제거효율



UV 공정의 EDCs, PPCPs 제거효율

(Pereira 2007)

발표를 마치며...

- 통합 물수요관리의 중요성
 - 물 재생/재이용, 빗물 이용, 절수기기 보급 등과 같은 수요관리정책을 통한 물 낭비요인 제거
- 처리공정
 - 막여과 (예, MBR)
 - 고도산화 (예, 자외선소독)
- 운영시 고려사항
 - 안정적 수질 및 수량확보
- 홍보 및 교육을 통한 인식전환
 - 긍정적 용어사용 및 브랜딩

☆ 한국건설기술연구원

이원태

수석연구원/공학박사/기술사 한국건설기술연구원 전화: 031-910-0318

Email: wtlee@kict.re.kr