CNI세미나 2015-95

착탈식 경장비용 연료전지 기술개발 현황 및 시장전망

000

제7차 충남미래연구포럼

제7차 충남미래연구포럼

☑ 개 요

○ 주 제: 선박용 연료전지 기술개발 현황 및 시장 전망

○ 일 시: 2015. 9. 24.(목), 16:00~

○ 장 소 : 충남연구원 2층 세미나실

○ 발제자:황상문 상무(연구소장 겸임, (주)프로파워)

○ 주요내용 : 착탈식 경장비용 연료전지 기술개발 현황

세계시장 전망과 한국기업의 진로

진 행 순 서

시	간	소요	세부 행사내용	비고
부터	까지	(분)	ALT SALIS	91 *
16:00	16:10	10′	▶ 인 사 말 씀	· 미래전략연구단장
16:10	17:00	50′	▶ 주 제 발 표 "착탈식 경장비용 연료전지기술개발 현황"	· 황상문 소장 ((주)프로파워)
17:00	17:50	50′	▶ 질의응답 및 자유 토론	· 참 석 자 모 두
17:50	18:00	10′	▶ 정리 및 폐회 (석식)	· 미래전략연구단장

발 제.

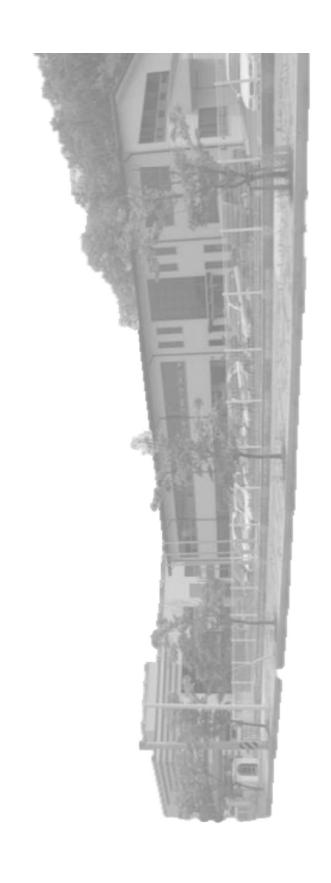
착탈식 경장비용 연료전지 개발현황 및 사업화 계획

황 상 문 상 무(연구소장) (주)프로파워

항 아 나 마

2015.09.24

CONTENTS


경장비용 연료전지 개발 동향 0

국외 개발 동향 02 국내 개발 동향 03

04

邻名 연료전지 개발 경장비용

Trends on FC for Portable & Specific Purpose

Micro Fuel Cells

Light Traction

Material Handling

-Auxiliary Power Unit (APU)

Emergency-power supply/ Uninterruptible power supply

Portable application & consumer electronics

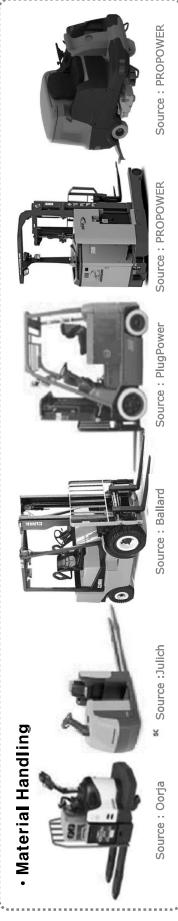
Forklift, Airport Buggies

Electrical Scooters & Bikes, Wheelchairs

Equal-zero-emission & Grid independent electric power supply

Boots, Motorhomes & Generator sets

Telecommunication (Telecommunication base stations)


Computer centers, back-up power (border control, tunnel appl.)

Materials Handling 1.5-10 kW Military, APU 25-200 W Computer 15-30 W Mobile Phone 2-5 W **MP3 Player** 0.1-1 W

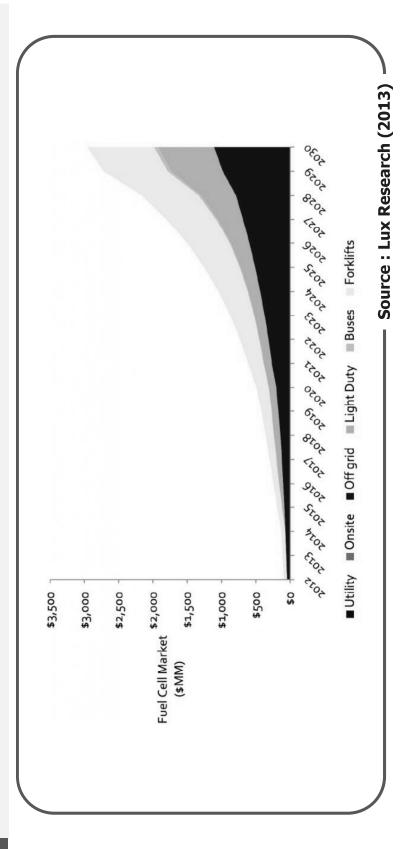
PEMFC & DMFC-Systems as range extender or battery replacement

Scooter

Source: PROPOWER

Source: SFC

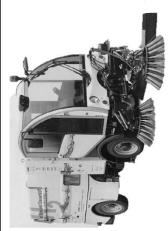
Source: SUZUKI



Source: PROPOWER

경장비용 연료전지 개발 동향

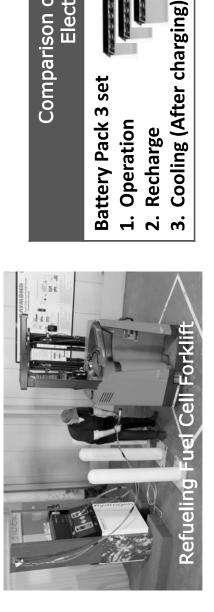
according to Lux Research. FC MHV suffer less downtime compared to their of 62,000 fc MHV (a CAGR of 21 percent from 2012), and revenues of \$973 electric counterparts, which take longer to charge. This will result in sales FC MHV (Material Handling Vehicles) does offer value to customers, million (a CAGR of 18 percent from 2012).

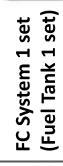


0 时 0 0 世 경장비용 연료전지

Reducing the environmental impact with the economical verification

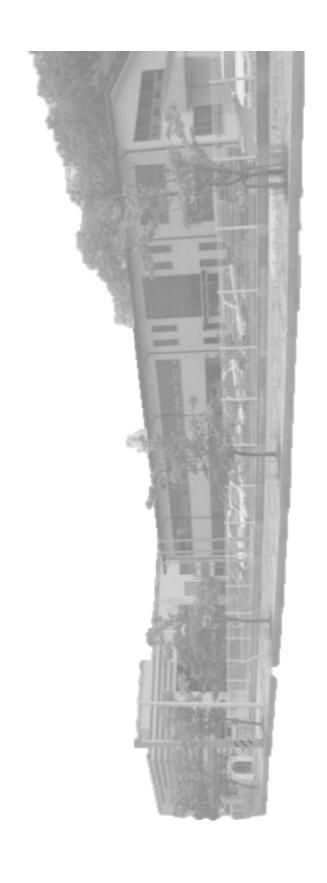
Electric Transportation equipment: Zero-emission, Low-noise, High-efficiency





Comparing Fuel Cell with Battery - Lightweight, Continuous use

Replacement of Lead-Acid Battery: Weight & Volume Reduction, Continuous use


Comparison of Power source for Electric Forklift **Battery Pack 3 set**

국외 개발 동향

더 H

APU [2012, SFC, Germany]

EFOY OF

providing up to 24 hours of operation from a single 10 kg hydrogen cylinder

BOC Hymera	
Fuel Cell Type	PEMFC
Rated Output Power	150W
DC Output Voltage	13.3 ~ 14.
Max. DC Output Current	12 A
Efficiency	~50% @ 10
Typical gas consumption rate @ 100W	1 L/mir

≫ 00

· APU [2013, NaBiCo, Japan]

APU [2013, Horizon, Singapore]

	PEMFC	up to 2W	3.8 ~ 5 V	210 g	0~35 ℃	USB 5V
MINIPACK Fuel Cell Charger	Fuel Cell Type	Rated Output Power	DC Output Voltage	Weight	Operating Environment	Electrical Interface

33 W

7.5 kg

3years

Scooter [YAMAHA, Japan]

0	9	Ġ	
(
L	_	L	
	e	7	7
		-	9
	-	7	7
	ě	-	
	3		
	(Ţ	3
7		•	

500W	Methanol	200km	40 km/h	50cc
Fuel Cell Output	Fuel	Driving Range	Max. Speed	배기량

Yamaha FC-DП

1,000W	Methanol 54%	3.6L	Lithium-ion	1.2kW	125km (at 30km/h)
Fuel Cell Output	Fuel	Fuel Tank Capacity	Battery	Max. Power	Range

Scooter [2013, SUZUKI, Japan]

- Scrubber [2013, Nilfisk, USA]

PEMFC	10 kW	LPG	Plug Power
Fuel Cell Type	Power	Fuel	Project Member

Hydrogen (350 bar)

2.5 kW

PEMFC

Fuel Cell Type

Capacity

Fuel

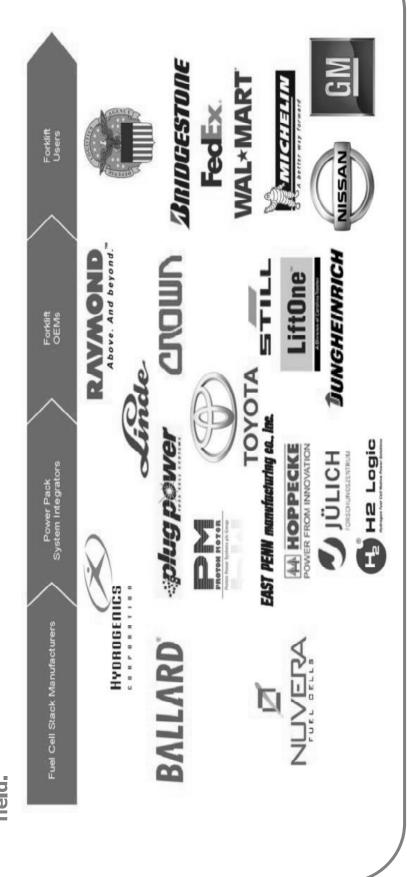
HyTec Fuel Cell Hybrid Scooter

350 km @ 30 mph

220 miles

Intelligent Energy

Project Member


Range

MHV

- Manufacturers of fuel cell stacks are involved in seeing how their fuel cell technology can be adapted and applied to this vehicle segment.
- System integrators are involved in building the fuel cell technology into hybrid power pack units that can be fitted to forklifts, pallet trucks and other similar vehicles.
- Material handling vehicle OEMs are involved, working along side the system integrators,
 - Users of material handling vehicles are involved in testing the fuel cell vehicles in the in fitting of fuel cell systems to their forklift vehicles and promoting the technology.

동향_Vehicle 국업 개발

MHV

Development trends of Fuel cell for material handling vehicles

2015

SOLIGIES NUVERA

Authorized Dealer

HYDROG(E)NICS

PROTON MOTOR
Proton Power Systems plk Group

-Oorja PRO-POWER

companies developed FC power pack for MHV and earnest in the United commercialization States

power pack for MHV Developed the FC

Suggested the applicability

of FC for MHV

TOYOTA INDUSTRIAL EQUIPMENT

RAYMOND
Above, And beyond."

HYSTER-YALE
MATERIALS HANDLING

CELLEXPOWER

(1

Logistics companies and

cell

fuel

FC MHV and manufacturer

developed

succeeded in driving test


fue World

Feb. 27. 2014, total 78 sites and 6227 units in Dissemination of MHV with a FC power pack commercialization types North America appearance Various

MHV and

MHV [Plug-Power, USA]

5M hours of operation

~1,200 GenDrive units

deployed

6,000-10,000 refueling

each week

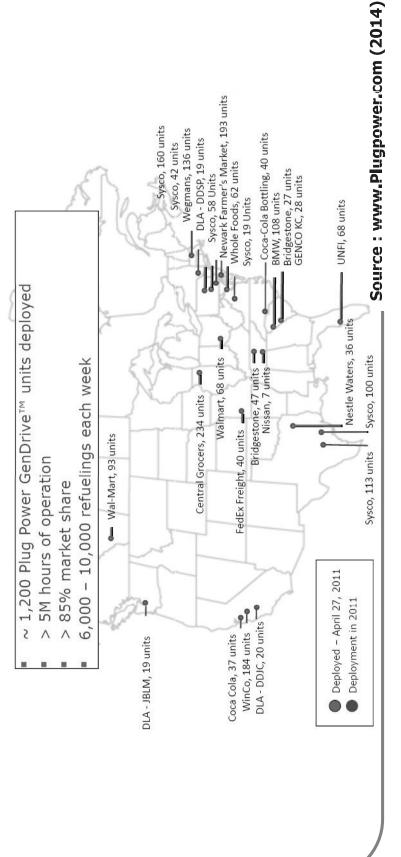
85% market share

	PEMFC	1.5-3kW	24V DC		350bar
GenDrive 3200,3330	Fuel Cell Type	Power	Output Voltage	FUELING SPEC	Pressure

Source: www.Plugpower.com (2014)

< 1.5min

- 21 -


FCvelocity - 9SSL

BALLARD

MHV [Plug-Power, USA]

market share, other companies are getting in on the action as European logistics firms of 1,133 orders. Recent customers include BMW in Spartanburg, SC, Ace Hardware in look to put fuel cell lift trucks in their warehouses. Plug Power is setting its sights high with a goal of shipping 3,000 units in 2014. The company currently has a sales backlog According to Fuel Cells 2000, Plug Power were over 4,000 fuel cell forklifts in use in the U.S. as of July 2013. While Latham, NY-based Plug Power currently has an 85 percent Wilmer TX, Proctor & Gamble in Mehoopany, PA, Kimberly-Clark in Graniteville, SC.

MHV [Plug-Power, USA]

PRODUCT SPECIFICATIONS	1500	1800	17	1700
Nominal Voltage	36 VDC	36 VDC 48 VDC	36 VDC	48 VD
Maximum Continuous Power	8 kW	8 kW 10 kW	8 kW	10 KV
Dimensions	38.3" x 24.7" x 22.6"	38,5" × 27,2" × 22,75"	38,6" x 32,82" > 23,0"	'×32.82"
Weight	2,150 lbs	2,250 lbs	3,00	3,000 lbs
Operating Temperature	-22°F ~ 104°F	-22°F ~ 104°F	-22°F ^	-22°F ~ 104°F
Connector	SB 350	SB 350	SB	SB 350
	FUELING SPECIFICATIONS	CIFICATIONS		
Hydrogen Storage	1.5 kg	1.6 kg	1.8	1.8 kg
Pressure	350 bar	350 bar	350	350 bar
Fill Time	< 3 min	< 3 min	м V	< 3 min

•

MHV [Plug-Power, USA]

3300-D	24 VDC	3.2 kW	12,9" × 31,0" × 30,8"	590 lbs	-22°F ~ 104°F	SB 175	NS	0.72 kg	350 bar	< 1.5 min
3300	24 VDC	1.8 kW	12,9" x 31,0" x 30,8"	590 lbs	-22°F ~ 104°F	SB 175	FUELING SPECIFICATIONS	0.72 kg	350 bar	< 1.5 min
PRODUCT SPECIFICATIONS	Nominal Voltage	Maximum Continuous Power	Dimensions	Weight	Operating Temperature	Connector		Hydrogen Storage	Pressure	Fill Time

Source: www.Plugpower.com (2014)

MHV [NUVERA Fuel Cells, USA]

NUVERA

Nuvera Fuel Cells has supplied high-performance motive fuel cells to major automakers and manufacturers of industrial vehicles for over 12 years.

Product	CS25	CM25	CM32	RL25
Rated Power (30sec)	25 kW	>	31 kW	25 kW
Voltage	36 VDC	Ų	48 VDC	36 VDC
Operating Current Range	-50~1,150 A	-400~1,150 A	-280~1,150 A	-400~1,150
Energy Storage Capacity	19.1 kWh	35,7 kWh	36.5 kWh	35.7 kWh
Size (mm)	889 x 667 x 602	970 x 798 x 602	8 x 602	970 × 510 ×
Target Weight (kg)	839	1,406	90	1,155
	Fuel Sp	Fuel Specifications		
Refueling Time	eo sec		120 sec	
Hydrogen Storage	0.5 kg		1.0 kg	

781

4 0

SAE J-2600 H35, CE 0036

350 bar

Indoor Use Only

-4~35 ಬ

Water Vapor

Source: www.Nuvera.com (2014)

MHV [NUVERA Fuel Cells, USA]

NUVERSA

Forklifts using fuel cells from other manufacturers are using Nuvera's PowerTap on-site hydrogen generation and refueler, which can produce up to 50 kg of hydrogen per day.

will come from water, producing 70 tons less carbon dioxide and avoid 330,115 kWh of PowerTap is a steam methane reformer and Nuvera claims about 45% of the hydrogen electrical consumption annually.

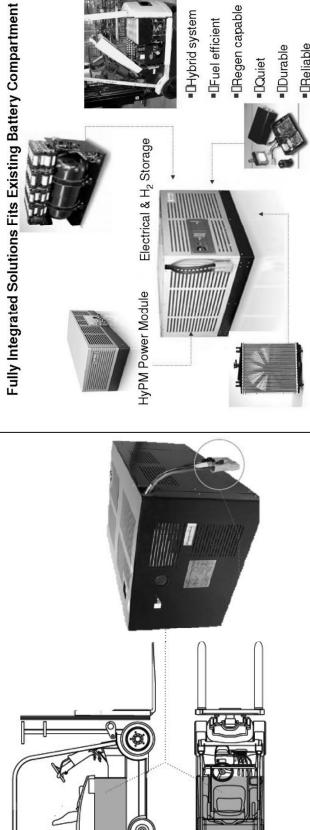
Production Rate (PTG-50)	50 kg/day (865 scfh)
Hydrogen Output Purity	99.995% or greater (meets SAE J2719)
Dispensing Pressure	5000 psig (350 bar), settled
Storage Capacity	Configurable modules from 12 - 128 kg
Compressor	Standalone, hydraulically driven intensifier
Electrical Requirements	480 VAC, 60 Hz, 3 Phase
Gas Requirements	Natural gas pipeline, 7 - 14" H ₂ 0
Operating Temperature	-4"F to 113"F (-20"C to 45"C)
Standards Compliance	System Designed to: CSA 5.99, HGV4 NFPA 2/70/52/55, IFC, ASMEB 31.3 Dispenser Nozzle: SAF 12600-H35 Type A Compliant
Environment	Generation, Compression & Storage: Outdoor

Dispenser: Indoor or Outdoor

Savings in annual ownership costs

- According to NREL analysis, a typical high throughput warehouse can expect up to 10 percent savings in annual ownership costs, resulting in a payback of less than one year. (5.6 percent savings in 3kW Class III Pallet Jack)
- 80% lower refueling / recharging labor cost, 75% less space as compared with battery recharging infrastructure

	10kW Class I Forklift	s i Forkiift	3kW Class III Pallet Jack	Pallet Jack
Green Text = Advantage	Fuel-Cell Powered	Battery-Powered	Fuel-Cell Powered Battery-Powered	Battery-Powered
Annual Cost of Ownership Per Lift (Total)	\$17,800	\$19,700	\$11,700	\$12,400
Fuel Cell / Battery System Maintenance	\$2,200	\$3,600	\$500	\$400
Facilities Space for Refueling / Recharging Infrastructure	\$500	\$1,900	\$500	\$1,900
Cost of Fuel / Electricity	\$2,400	\$500	\$1,400	\$400
Labor Cost of Refueling / Recharging	\$800	\$4,400	\$500	\$3,200
Annual Cost of Infrastructure Capital & Maintenance	\$3,700	\$1,400	\$3,700	\$1,300
Annual Cost of Fuel Cell / Battery Systems	\$2,600 (\$3,700 w/o tax credit)	\$2,300	\$1,300 (\$1,800 w/o tax credit)	\$1,300
Annual Cost of Lift Truck Capital & Maintenance	\$5,600	\$5,600	\$3,900	\$3,900
Operational Characteristics				
Time for Refueling / Changing Batteries	6-8 min/day	30-45 min/day	3-5 min/day	25-35 min/day
Number of Fuel Cell / Ballery Systems for Mulliple Shift Operations	1	2-3	-	2-3
Total Fuel Cycle Energy Use (total energy consumed/kWh delivered to the wheels)	~12,000 Btu/kwh	>14,000 Btu/kWh	~12,000 Btu/kwh	>14,000 Btu/ kWh
Fuel Cycle Greenhouse Gas Emissions (g CO_2 equivalent)	800 g/kwh	1,200 g/kwh	800 g/kwh	1,200 g/kwh
Estimated Product Life	8-10 years	4-5 years	8-10 years	4-5 years
No Harmful Air Emissions at Point of Use	>	>	>	>
Quiet Operation	>	>	>	>
Wide Ambient Operating Temperature Range	>	>	>	>
Constant Power Available Over Shift	>		>	


Source: DOE Energy Efficiency & Renewable Energy (2014)

동향_Vehicle 言言

MHV [Hydrogenics, Canada]

Undergoing field trials at General Motor's FedEx logistics hub (the Toronto Pearson Ontario automotive assembly plant and Airport)

OU Hydrogenics currently is focusing Stationary.

■ □Regen capable ■ □ Hybrid system ■□Fuel efficient -[Reliable ■ □Durable DQuiet Power Conditioning Electrical & H₂ Storage Thermal Management

HyPX Power Pack

PEMFC	22-30kW
Fuel Cell Type	Power

Source: www.Hydrogenics.com (2012)

· MHV [Hydrogenics, Canada]

HYDROG(E)NICS Advanced Hydrogen Solutions

Hypx" FUEL CELL POWER PACKS

Pure. Power. Performance.

	80V	33.7 × 40.5 × 31 in	10 kW	30 kW	25 kW	2535 lbs	3.5 lb	5000 psi	TN1 350 bar H ₂	CE
HyPX [™] 1-855	8	855 x 1028 x 784 mm	10	30	25	1150 kg	1.6 kg	350 bar	TN1 35	0
	Nominal Voltage	Size (LxWxH)	Net Power Output (Continuous)	Max. Power Output - Peak for 15 sec.	Available Electrical Energy	Weight	H ₂ Fuel Storage Capacity	H ₂ Fuel Storage Pressure @ 15 ັ	H ₂ Fuel Fill Port	Safety / Certifications / Standards

Source: www.Hydrogenics.com (2012)

MHV [STILL, UK]

Gas tanks (350 bar, 2.5 kg H2)

Ultra capa intermediate storage (50 F, 70 V - 110 V)

RX 60-45

Additional weight

Fuel cell pack (3 x 6 kW)

Fuel Cell Type	Power	Power	Size (mm)	Nominal Voltage
	The vehicles were used, for example, at	and at	company HHLA and at chemical company	BASF.

Fuel Cell Type	PEMFC
Power	10kW (endurance)
Power	Max. 30kW (15 sec)
Size (mm)	$855 \times 1,028 \times 1,150$
Nominal Voltage	80V
Fuel	Hydrogen (350bar) - 25kW

Source: www.stilll.co.uk (2013)

MHV [Toyota, Japan]

-Demonstration 2 units; will be commercially available by 2015

- experiment

Period December 2012- March 2014

Location Toyoda Gosei Co., Ltd. Kitakyushu (Kitakyushu, Fukuoka Prefecture)

Contents Two product fuel cell forklift 2.5t, 1 group hydrogen station

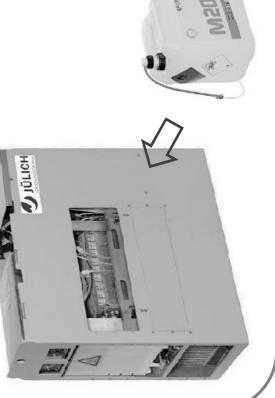
Use of hydrogen generated seconda rily from Sumitomo Metals Co., Ltd. Nippon Steel Yahataseitetsusho

FCHV-F prototype

PEMFC	8-10kW	Hydrogen	Toyoda Gosei Co., Ltd., Toyota Motor Co.
Fuel Cell Type	Power	Fuel	Project member

Source: Toyota Industries (2013)

MHV [Julich, Germany]

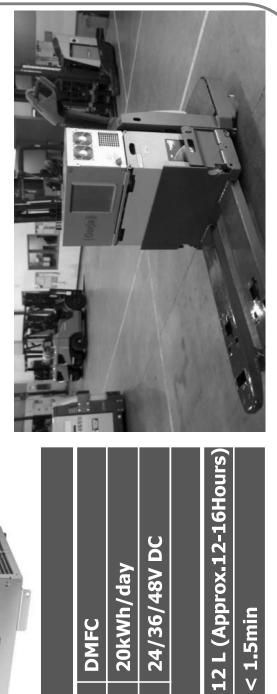

2007 DMFC V3.1

7kW	20L (Approx. 20hrs)	Lithium-ion 45Ah	1,300W	90ea	3,000 hrs	75mW/cm ² @450mV	44	600x381x482mm
Peak Power	MeOH Cartridge	Battery	Stack Nominal Power	Number of Cells	Lifetime	Power Density	Weight	Dimensions

Source: FZJ-Research Centre Juelich (2012)

DMFC V3.3 Hybrid System

MHV [Oorja, USA]

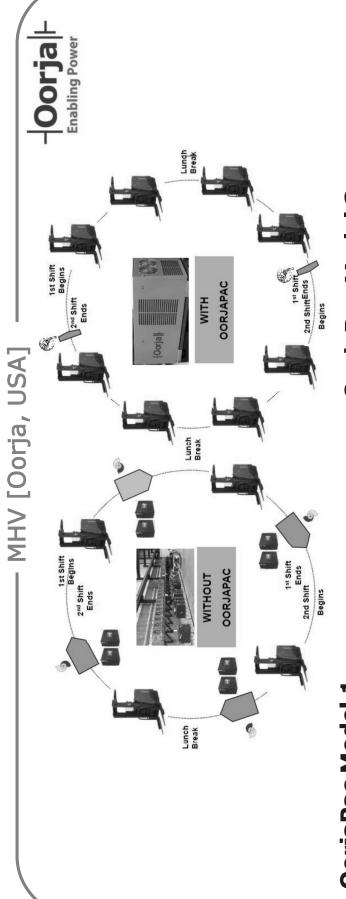

Oorja **Enabling Power**

> Oorja Fuel Cells (Oorja Protonics Inc) has also been busy, signing up UniPro Foodservice Inc. as a potential customer for Oorja's DMFC range-extender technology for materials handling vehicles (MHV).

00
_
an
w
\sim
\sim
4.0
10
491
10
<u> </u>
•

DMFC	20kWh/day	24/36/48V DC	
Fuel Cell Type	Power	Output Voltage	FUELING SPEC

< 1.5min


Fuel Tank Capacity

Fill Time

Source: Oorjafuelcells.com (2013)

10orja|

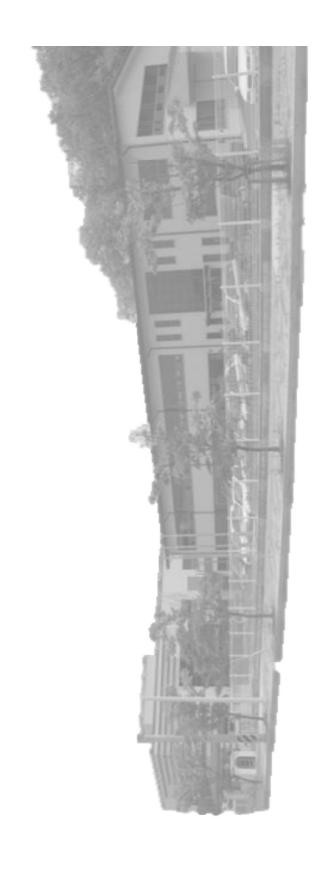
OorjaPac Model 1

4.5kW	62.5A	268	8,000
Nominal Power (W)	Output Current (A)	System Power Density(W-Hr/liter)	Stack Life (Hrs)

Operating Costs: \$0.18/kW Assumptions: 8 hours, 2 shifts Payback: Full payback in 12~15 months

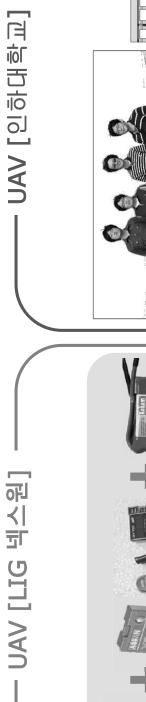
6 months is a little payback

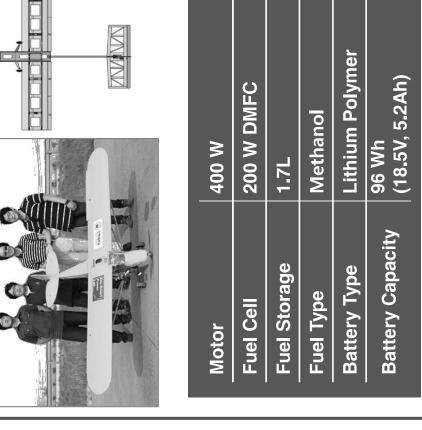
OorjaPac Model 3

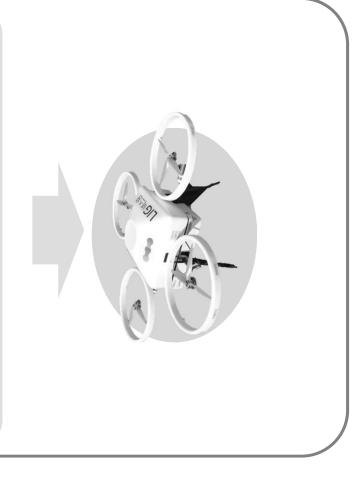

1.5kW	62.5A	231	8,000
Nominal Power (W)	Output Current (A)	System Power Density(W-Hr/liter)	Stack Life (Hrs)

Assumptions: 75 units, 2 shifts, age 7 years The total operating cost of \$ 3.2M savings Payback: Full payback in 19 months 5 months is a little payback

Source: Fuel Cell Today, Fuel cell industry review 2012 (2012)


국내 개발 동향



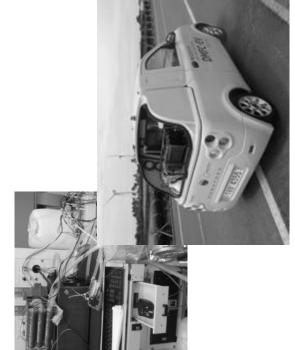


국내 개발 동향_Vehicle

Battery

Aircraft Parts

500W DMFC pack



2014

(42V of 220VAC)

Light Duty Vehicle [KIER]

DMFC-EV

Fuel Cell Power 2,000W

Battery Power

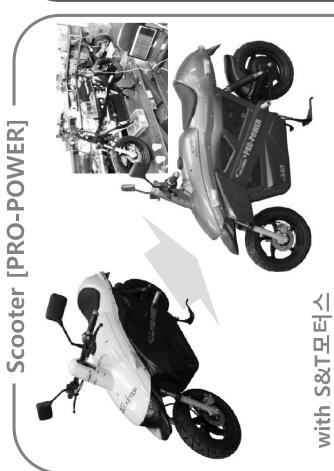
Bipolar plate

System Weight

76.7V/ 120Ah (9.2kWh)

266X155

63kg (연료탱크포함)


110 Cells (301cm²)

MEA

국내 개발 동향_Vehicle

Scrubber [PRO-POWER]

with 수성	1kW DMFC	14 L (100 % MeOH)	Methanol	Lithium Polymer	7.4 kWh (37V, 200Ah)	8,160 m²/hr
	Fuel Cell	Fuel Storage	Fuel Type	Battery Type	Battery Capacity	Productivity rate 1 side broom theoretical/ actual

Fuel Cell	1 kW DMFC
Fuel Storage	3.5 L (100 % Methanol)
Fuel Type	Methanol
Battery Type	Lithium Polymer
Battery Capacity	1.37 kWh (25.9V, 53Ah)
Speed	30km/h Max. 48km/h
Driving Range	210km

Electric Cart [KIER]

Electric Cart [PRO-POWER]

4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	

wer 500 W	rer 12V/ 18Ah *2ea (432Wh	apacity 2.5 L (약 10 Hours)	ght 23kg (연료탱크포함)	70 Cells (100cm ²)
Fuel Cell Power	Battery Power	Fuel Tank Capacity	System Weight	MEA

DM-Mini V501

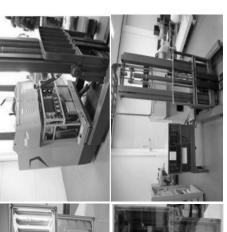
city	,	500 W DMFC		anol	Lithium Polymer	500 Wh(25.9V, 22Ah)
Motor Fuel Cell Fuel Storaç Fuel Type Battery Typ	otor 400 W		Fuel Storage 2.0 L	el Type Methanol	Battery Type Lithiu	Battery Capacity 500 W

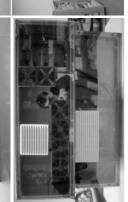
MHV [PRO-POWER]

PRO-POWER

2010

SWR1300L





y Hybrid Forklift	DMFC (1 kW Class)	12 L (100 % Methanol)	Methanol Solution	Lithium Polymer	3.9 kWh (25.9V, 150Ah)	1,300 kg	5 hrs
Fuel Cell –Battery Hybrid Forklift	Fuel Cell Type	Fuel Storage	Fuel Type	Battery Type	Battery Capacity	Maximum Load Capacity 1,300 kg	Driving Time

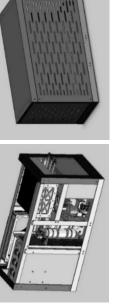
SSR14_1st

- MHV [PRO-POWER]

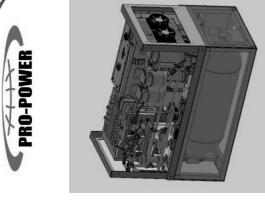
2011

SSR14_2nd

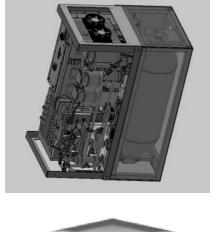
Fuel Cell –Battery Hybrid Forklift	y Hybrid Forklift
Fuel Cell Type	DMFC (1 kW Class)
Fuel Storage	14 L (100 % Methanol)
Fuel Type	Methanol Solution
Battery Type	Lithium Polymer
Battery Capacity	5.2 kWh (25.9V, 200Ah)
Maximum Load Capacity 1,300 kg	1,300 kg
Driving Time	6 hrs


MHV [PRO-POWER]

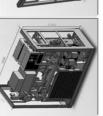
2014

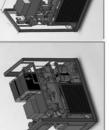


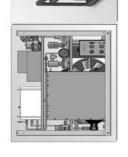
MHV [PRO-POWER]

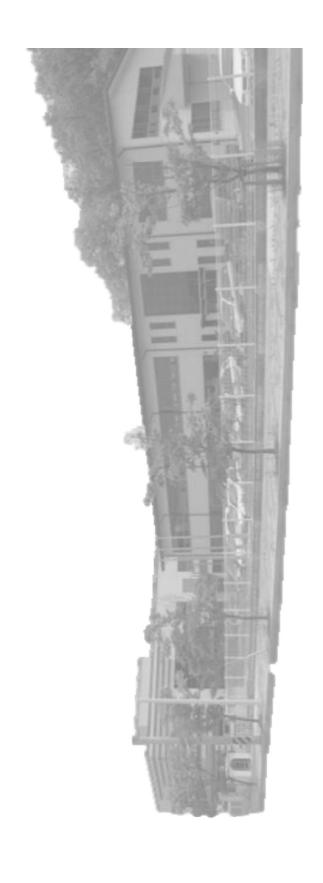


2014

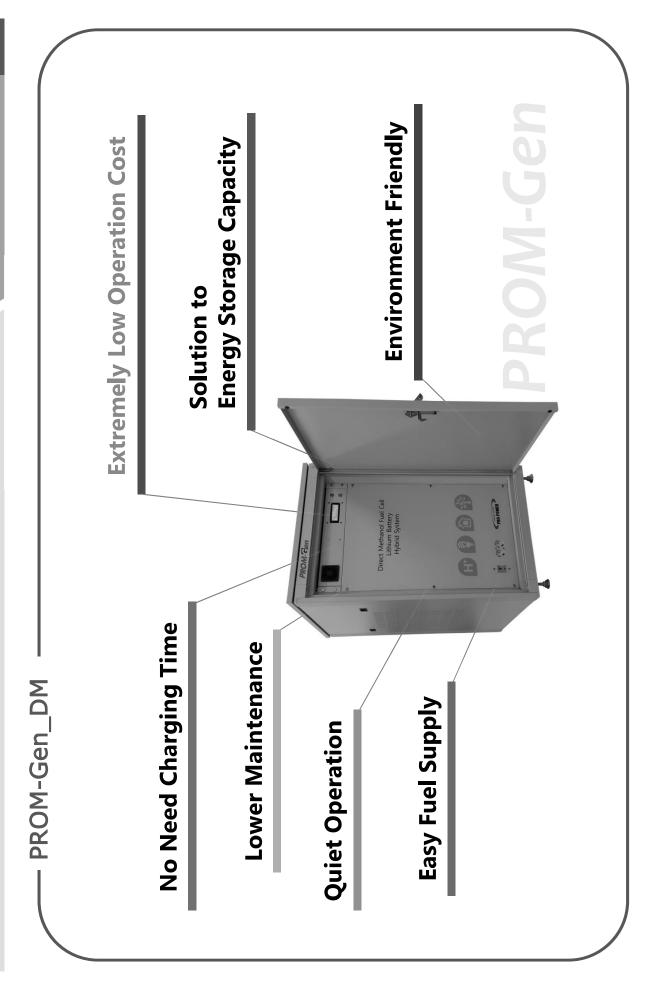








사업화 계획



사업화 계획 Telecom-tower [BTS]

- PROM-Gen_DM ·

Working Hours: 9hrs/day during 6 months

사업화 계획 Telecom-tower [BTS]

PROM-Gen_TBP

< 1 kW Class PROM-GenTM >

Specifications	PROM-Gen™ DM1000	1,000W - 1,000W DMFC System - 1.92kWh Lithium Battery	DC 48VDC	Max. 2.9kWh (1hr) 25.9kWh/day (24hrs)	1,260mm*600mm*800mm (H x W x D)	150KG
S	Model	Rated Power	Out put Power	Generating Capacity	Dimension	Weight

— PROM-Gen_MHV —

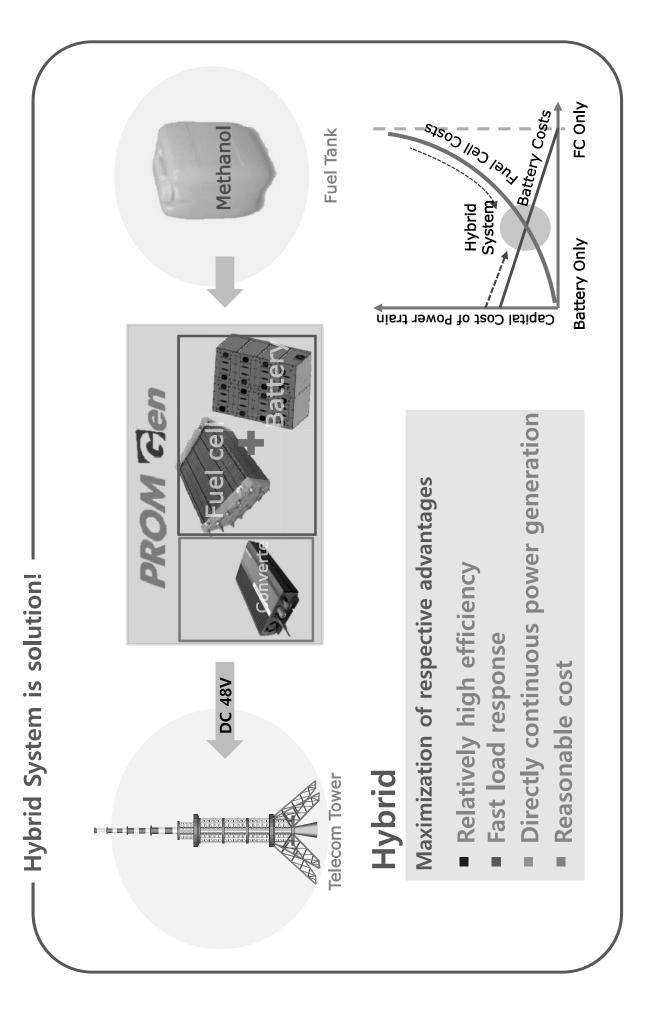
사업화 계획 Forklift [MHV]

Problems Encountered

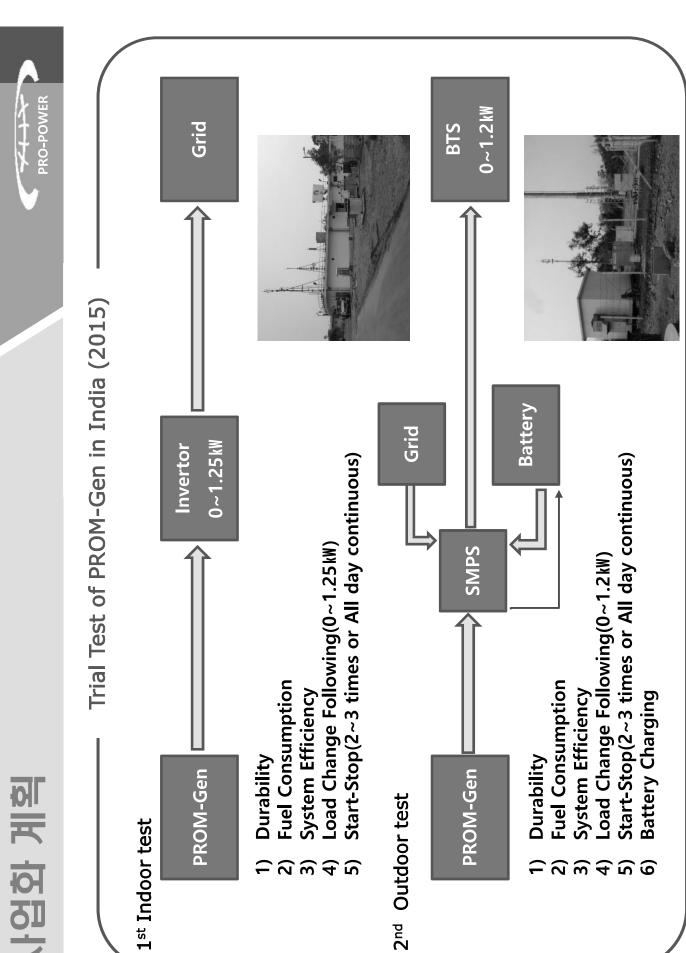
Current Solution

UNSATISFACTORY with

Long Charging Time **Disposal Expense Storage Capacity**


Low Electricity Quality

Noise


Environment Problem

사업화 계획 Telecom-tower [BTS]

사업화 계획

Selection of strategic markets

2nd market expansion → Countries in Africa, Japan, Indonesia, The Philippines 1st market entry → India, Bangladesh, Myanmar

India

Enter the Telecom Tower market (Reliance, Indus Tower, ATC)

- 530,000 telecom towers installed.
- Due to sudden increase in the diesel fuel costs, there is higher demand for substitute

energy.

- In India, there are eight hours of blackout on average.

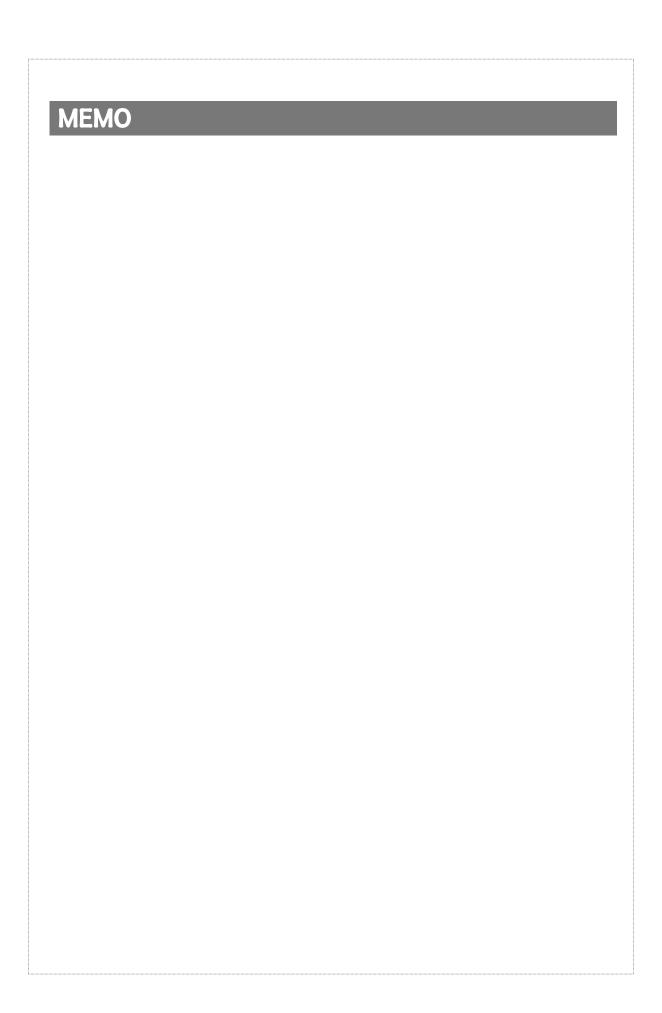
Telecom Tower and independent power supply market

- Higher demand for emergency due to high frequency earthquakes and Tsunami.

Africa

Small sized power plant market (household & miner lodging)

- First enter the Republic of South Africa, Mali and Senegal and expand into neighboring countries.


> Southeast Asia

Telecom Tower and independent power supply market

- Due to economic growth, there is a severe shortage of power supplies.
- Higher demand in countries with numerous islands.(Philippine, Indonesia)

Japan

MEMO	

MEMO	

MEMO	

MEMO	