MGDB(Micro Geo Data Base)를 활용한 지역 정책발굴 - 충남 정책지도 발간 사례와 고도화를 위한 제언-

2016. 8. 31

최돈정

충남연구원 미래전략 연구단 초빙책임 연구원

Contents

- 01 수정 가능한 공간단위 문제와 마을단위 정책지도의 필요성
- 02 아틀라스 정책지도 사례분석
- 03 정책지도 구축전략 및 컨텐츠 개발방안
- 04 충남 정책지도 발간사례 소개
- 05 Ⅰ 시사점 및 충남 정책지도 고도화를 위한 제언

마이크로 데이터(Micro Data)

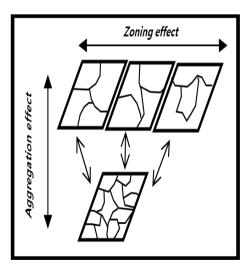
- 원자료에서 입력오류 등을 제거하여 공표용 통계표 작성 등 데이터 가공의 기초 자료로 사용되는 통계 원시자료

마이크로 공간 데이터(Micro Geo Data)

- 공간DB화 된 마이크로 데이터
- 위치정보와 속성을 가진 데이터
- 시간정보와 속성을 가진 데이터
- 위치와 시간정보, 속성을 가진 데이터

수정 가능한 공간단위 문제와 정책지도의 필요성

- 수정 가능한 공간단위 문제(MAUP : Modifiable Areal Unit Problem)
- 정책지도의 필요성


◈ 수정 가능한 공간단위 문제(MAUP: Modifiable Areal Unit Problem)

> MAUP의 개념

- ✔ 1979년 Openshaw와 Taylor에 의해 이슈화됨
- ✔ "동일한 자료와 기법에 대해 상이한 공간단위를 적용한 분석 시 나타나는 결과의 가변성"
- ✔ "현재 공간분석이 직면하고 있는 가장 중요한 난제 중 하나"
- ✔ 분석목적의 중요도에 따라 심각한 정보의 오류 및 제원의 낭비를 초래할 수 있음
- ✔ 1980년대 후반 NCGIA의 10대 중요과제로 선정 되었고 최근 들어 공간정보 분야의 핵심 키워드로 재부각
- ✓ 가장 좋은 MAUP의 해결방법은 데이터 정확성을 담보한 국지적 규모의 공간단위 적용 및 상세화

▶ MAUP과 마을단위 정책지도의 연관성

- ✔ 공간분석이 실질적 정책수요지역의 현황을 파악하지 못하는 문제
- ✔ 분석 단위와 정책 수요지역의 공간적 일치성이 결여되는 문제
- ✔ 자료구득의 어려움으로 인해 과학적 근거보다는 계획가의 직관에 의존하는 문제

자료: 최돈정 외,

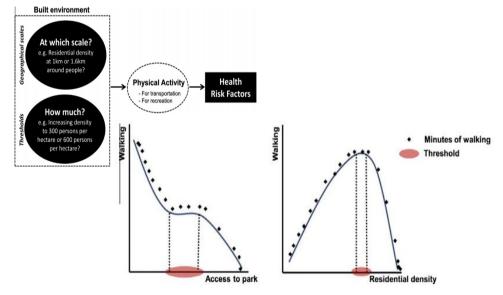
수정 가능한 공간단위 문제(MAUP: Modifiable Areal Unit Problem) 연구사례

Contents lists available at ScienceDirect

Cities

journal homepage: www.elsevier.com/locate/cities

Viewpoint


(Re)Designing the built environment to support physical activity: Bringing public health back into urban design and planning

Mohammad Javad Koohsari a,b,*, Hannah Badland a, Billie Giles-Corti a

^a McCaughey VicHealth Centre for Community Wellbeing, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia

^b Behavioural Epidemiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia

✓ 신체활동 촉진을 위한 물리환경 조성 시 핵심변수들이 공간스케일에 따라 상이한 영향력을 가질 수 있으므로 획일적인 세서스기반 분석은 불합리

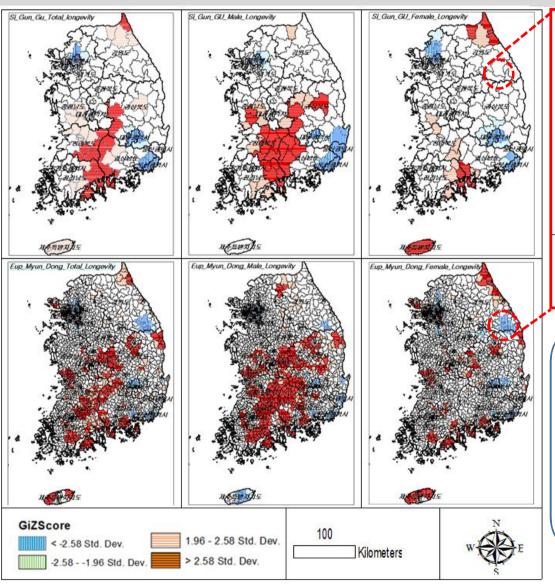
Contents lists available at ScienceDirect

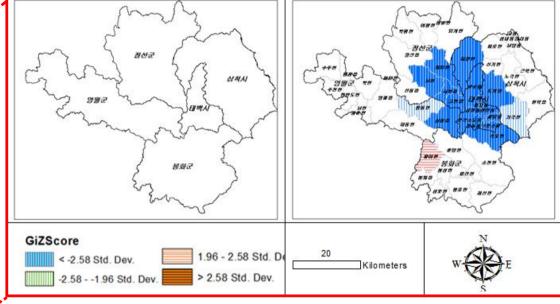
Journal of Transport Geography

journal homepage: www.elsevier.com/locate/jtrangeo

Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership

Hyungun Sung a. , Keechoo Choi b.2, Sugie Lee c.*, SangHyun Cheon d.3


- ^a Department of Urban & Regional Transport Research, Korea Transport Institute, 315, Goyangdaero, Ilsanseo-gu, Goyang-si, Goeonggi-do 411-701, Republic of Korea
- ^b Department of Transportation System Engineering, Ajou University, 5 Woncheon-Dong, Youngtong-Gu, Suwon 442-749, Republic of Korea ^c Department of Urban Planning & Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 133-791, Republic of Korea
- d Department of Urban Planning & Design, School of Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791, Republic of Korea


Analysis results for Seoul by service boundaries.

	250 m			500 m			750 m			1 km			1.5 km		
	Coef.		t												
Constant	5.703	***	4.03	5.496	***	4.16	10.112	***	7.25	11.553	***	8.50	10.124	***	6.88
Density															
Residential	1.512	***	2.94	0.762	***	3.43	0.830	***	3.59	0.697	*	1.78	0.363		0.87
Small-scale neighborhood living	3.106	***	5.64	2.609	***	5.02	1.084	*	1.65	1.228		0.90	1.185		0.84
Large-scale commercial	0.422		0.35	3.324	***	3.48	0.649		0.41	-4.188		-1.20	0.419		0.05
Large-scale public service	3.083	*	1.89	0.743		0.94	1.755	**	2.32	7.873	**	2.50	0.879		0.31
Office	1.861	***	2.65	1.107	***	2.78	1.515	**	2.25	0.195		0.07	-1.357		-0.66
Diversity															
Res. & non-res. use	-0.496	**	-2.52	-0.051		-0.25	-0.407	*	-1.67	0.632	**	2.57	0.126		0.42
Res. & small-scale neighborhood living use	0.569	***	3.13	0.051		0.23	0.221		0.90	-0.103		-0.49	-0.280		-1.21
Res. & large-scale commercial use	-0.129		-0.68	-0.112		-0.47	-0.481	*	-1.68	NA			NA		
Res. & office use	0.068		0.44	0.021		0.12	0.087		0.34	-0.061		-0.30	-0.072		-0.32
Large-scale commercial & office use	-0.079		-0.68	0.092		0.80	0.192		1.71	-0.078		-0.62	0.226		1.39
Index for the 5 nonresidential facility use types	0.104		0.44	0.253		0.98	0.589	**	2.28	-0.464	*	-1.76	-0.091		-0.29
Station accessibility															
Number of station entrances/exits	0.062	***	3.79	0.066	***	4.20	0.061	***	3.79	0.073	***	4.39	0.071	***	4.06
Number of bus routes by station	0.008	***	2.75	0.009	***	3.29	0.013	***	4.69	0.014	***	5.10	0.013	***	4.60
Distance to closest station (log)	0.077		0.50	0.148		1.01	-0.306	*	-1.92	-0.386	**	-2.41	-0.148		-0.87
Transfer station (1 = Yes, 0 = No)	-0.131		-1.16	0.097		0.87	0.107		0.89	0.054		0.46	-0.134		-1.08
Railway type (1 = intra-urban railway, 0 = inter-urban railway)	0.290	**	2.25	0.421	***	3.32	0.399	***	3.10	0.474	***	3.62	0.424	***	3.04
Distance from city hall station (log)	0.063		0.96	0.000		0.00	-0.046		-0.73	-0.029		-0.48	0.021		0.33
Distance from Gangnam Station (log)	0.135	*	1.85	0.117	*	1.70	0.020	*	0.30	-0.053		-0.85	-0.103		-1.49
Model statistics															
Lambda (\(\lambda\)	0.652	***	3.60	0.648	***	3.55	0.563	***	2.63	0.439	*	1.73	0.497	**	2.11
Moran's I (error)	4.333	***		5.795	***		4.026	***		2.791	***		2.331	**	
Lagrange multiplier (error)	5.582	**		10.918	***		4.519	**		1.668			1.031		
R-squared	0.368			0.415			0.379			0.363			0.258		
Akaike's information criterion (AIC)	691.5			668.3			685.9			690.6			737.4		

MAUP의 예시

자료: 최돈정, 서용철2013. 장수인구의 분포패턴에 대한 탐색적 공간데이터 분석과 수정가능한 공간단위 문제(MAUP)의 Scale Effect에 관한 연구, 한국지리정보학회지, 16(3), pp. 40-53.

- ✓ 전국 장수인구 분포의 성별 Spatial Cluster Map
- ✔ 분석 기법은 Getis Ord Gi*
- ✔ 2010년 인구센서스 자료 활용
- ✔ 분석 공간단위는 시군구 vs. 읍면동
 - ☞ 최하위 공간단위 자료의 필요성 제시
 - ☞ '장수 특구' 선정사업시 무엇을 참고해야 하는가?

◈ 마을단위 정책지도의 필요성

- ✓ 충청남도의 경우 쌀 생산량이 가장 많은 광역지자체로써(2014 농업통계연보)
 - : 농업경제의 최하위 정주집단인 '마을'에 대한 현황파악 및 정책의 수요가 큰 지역에 속하지만
 - : 도시지역에 비해 의사결정 지원도구로써의 공간정보 활용도는 상대적으로 낮음
- ✓ 도시와 달리 소규모 & 산발적 군락 위주의 정주형태를 가지는 '마을'이라는 공간단위 특성상
 - : 관리 및 적응능력의 상대적 약점으로 인해 인문, 자연 환경에 많은 영향을 받고
 - : 환경적, 정책적 고립으로 인해 자생력이 떨어지는 곳이 다수 발생
- ✓ 센서스 기반의 공간분석 및 연구보고서로는
 - : 국지규모 현상의 정확한 환경변수를 파악하기 힘들며
 - : 다양한 분석을 통한 의미있는 정보의 창출이 어렵고
 - : 정작 필요한 정보가 누락될 가능성이 높음
 - ☞ 공간정보 활용도를 높인 지역 마이크로 DB기반의 정책지도의 구축
 - : 최하위 정주집단의 인문, 자연환경 변수에 대한 정확한 조사 및 변수간 영향관계에 대한 다양한 분석
 - → 자생력을 강화하기 위한 의사결정의 근거자료로써 활용성 높음

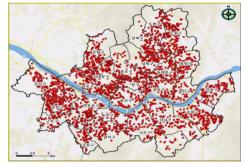
정책지도 사례분석

- 서울시 정책지도 서비스 구축사업
- 광주 광산구 GSimap
- Dartmouth Atlas of Health Care
- 시사점

◈ 서울시 정책지도 서비스 구축사업

▶ 개요

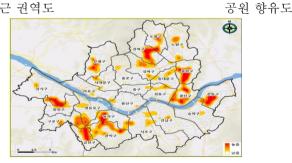
- ✔ 목민관클럽 정기포럼 시 '광주광역시 광산구 GIS를 활용한 정책지도' 사례발표(광주광역시 광산구) : '13. 5.25
- ✔ 서울 정책지도 서비스 구축계획 수립(행정1부시장 방침): '13. 8. 2
- ✔ 서울 정책지도 서비스 구축을 위한 전문가 자문 : '13.10. 7
- ✔ 주제별 정책지도 담당자 면담 실시: '13.11.29
- ✔ 소요예산 : 498,100천원(전산개발68%, 자산취득30%, 사무관리2%)


▶ 세부 사업내용

- ✓ 서울 정책지도 서비스 대상 발굴 및 분석모델 구현
 - : 서울백서, 시정운영계획 등 주요정책과 각종 통계자료, 사회적 현상을 분석하여 정책지도로 제작, 각 주제별 **분석 모델(시나리오) 개발**
- ✓ 서울 정책지도 데이터베이스 구축
 - : 분석모델 기반의 정책지도 데이터베이스 구축, 각 시나리오 단계별 성과물 데이터베이스 관리
- ✔ 서울 정책지도 운영프로그램 개발
- ✔ 서울 정책지도 서비스용 전산장비(H/W, S/W)도입

♦ 서울시 정책지도 서비스 구축사업 (자료: http://203.236.231.83/seoulmap/pc/seoulmap_3.html)

* : 사기 선물 서울시 정책지도



공원 위치도

전체인구 밀집지도

공원 도보접근 권역도

- 데이터 허브, 안내, 교육, 참여형 공간정보의 다각적 역할 수행
- 기본적인 현황도 이외에 분석 및 개발 측면 또한 큰 비중을 두고 있음
- '분석은 과학적으로 지도는 직관적이고 알기 쉽게'
- 공공 데이터와 빅데이터의 연계를 통해 국지적 규모까지 분석가능
- 산, 관, 학, 연의 융합적 체계

공원 수요예측도

서울시 정책지도 서비스 구축사업 (자료: http://203.236.231.83/seoulmap/pc/seoulmap_3.html)

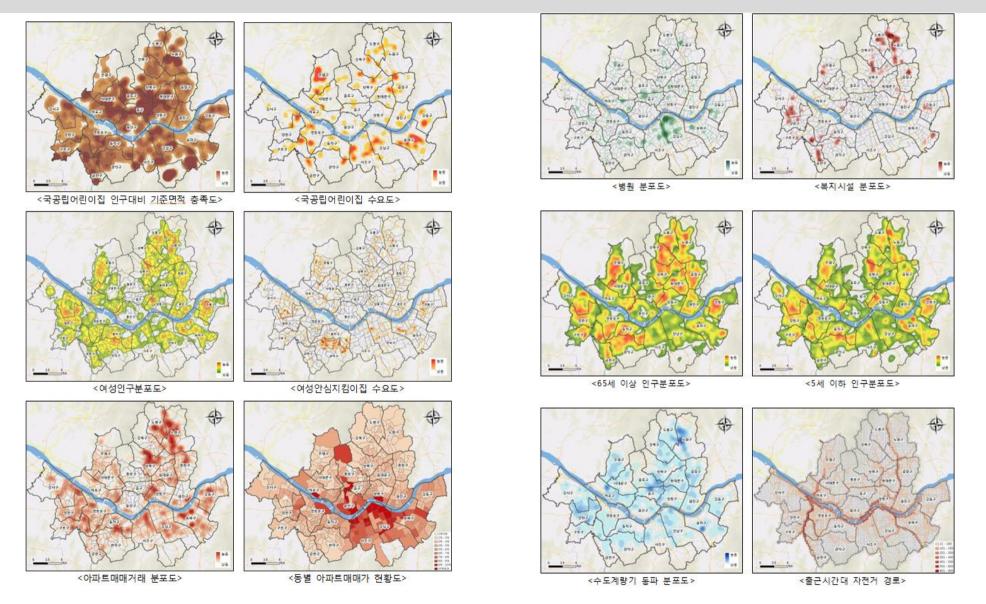
2015. 03. 10(화) 조간용

이 보도자료는 2015년 3월 9일 오전 11:15부터 보도해주시기 바랍니다.

보도자료

담당부서: 정보기획관 공간정보담당관

공간정보답당관 조봉연 2133-2830 공간정보개발팀장 김태준 2133-2840 주무관 양규석 2133-2841 웹페이지 http://gis.seoul.go.kr


사진없음 🗆 사진있음 🔳 매수 : 10매

골라서 활용하는 311종 '서울 정책지도' 대공개

- 서울시, 부동산 안전 교통 등 시민생활과 밀접한 311개 정책지도 홈페이지 공개
- 24종 87개 약 7천6백8십만건 빅데이터 활용. 공간정보 지도 위에 시각화
- 균형적이고 과학적인 행정 가능....맞춤형 정책으로 시민만족도↑. 예산절감
- 안전한 서울(안전.재난), 따뜻한 서울(복지 .주거), 꿈꾸는 서울(경제 .일자리), 숭 쉬는 서울(환경 .교통) 4개 정책목표, 15개 주제로 제작
- 기초자료는 서울시 전체 인구와 공공시설, 부동산 실거래, 사업체 기초조사 등 24종 87개 약 7천6백 8십만 건의 방대한 빅데이터 활용
- 현황파악, 정책 우선 수요지역 파악, 정책효과를 가시적으로 분석 평가

♦ 서울시 정책지도 서비스 구축사업 (자료: http://203.236.231.83/seoulmap/pc/seoulmap_3.html)

● 광주 광산구 Gsimap (자료: http://http://imap.gwangsan.go.kr/)

> 개요

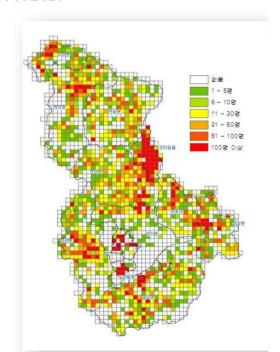
- ✔ 광산형 통합정보지도(Gsimap: Gwangsan integrated map)
- ✔ 개방, 공유, 소통, 협력을 모토로 한 '정부 3.0'의 가치를 구 단위에서 구현한 의의가 있음
- ✓ 오름 파트너즈, biz-gis, 폴인사이트, 광산구의 협업체제로 수행
- ✔ 공공데이터 : 8개 분야 약 400여 개의 데이터 셋 수집(부서간의 협조체계)
- ✓ 주민참여 데이터 : 마을단위의 지역조사모임 구성(현장활동을 통한 정보수집→ 커뮤니티 매핑)

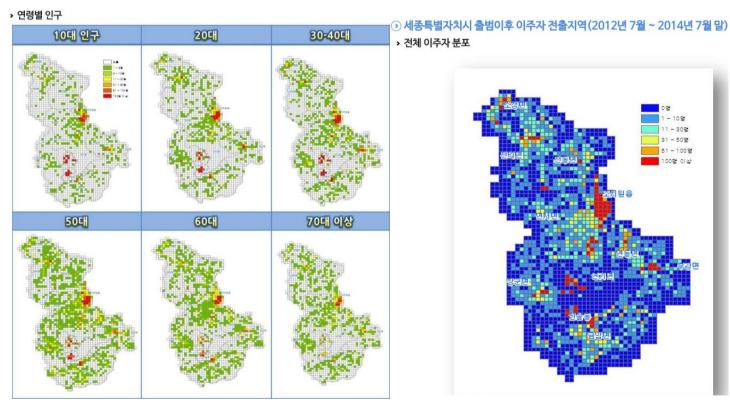
▶ 세부 사업내용

- ✔ 데이터수집, 정리, 분석, map구현의 4단계 프로세스
 - : 협업체계를 통한 자료수집 → GIS기반지오코딩 → 통계 및 공간분석 → map 구현
- ✔ GIS 정책지도(8 분야), 마을 안내지도(6 테마), 커뮤니티 매핑(5 유형)으로 map 제공
- ✔ 특히 커뮤니티 매핑의 경우 지역주민의 자발적인 참여를 유도하는 방식을 취함

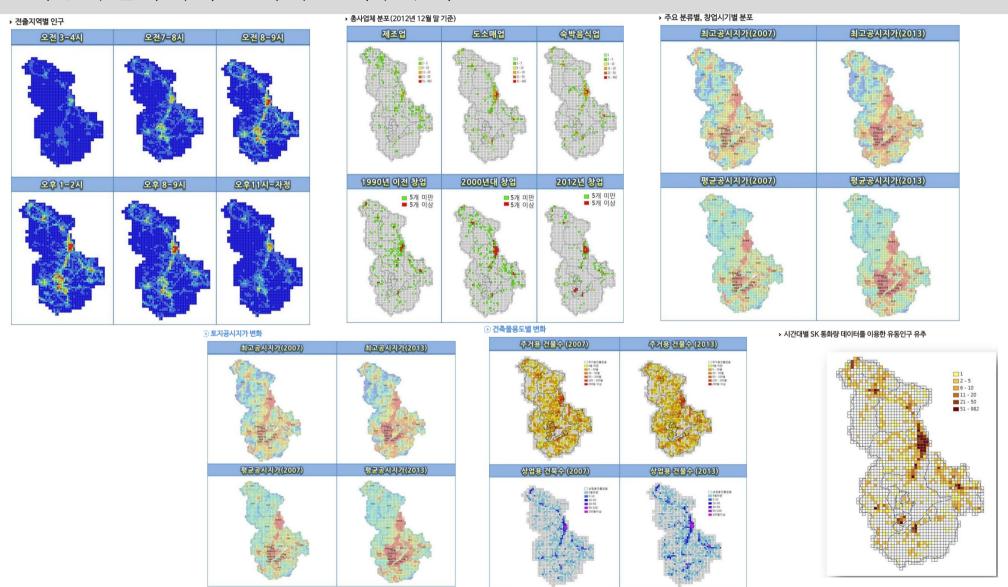
광주 광산구 Gsimap (자료: http://http://imap.gwangsan.go.kr/)

- ✔ GIS 정책지도의 경우 총 8가지 카테고리의 24개 항목 서비스: 이 중 8개 항목에 대한 서비스 운영
- ✓ 마을 안내지도의 경우 Geo-tag된 현황도의 성격
- ✔ 커뮤니티 매핑의 경우 참여형 GIS 형태
- ✓ 모든 자료는 2013년 기준으로 2014년 4~5월에 걸쳐 업로드 됨



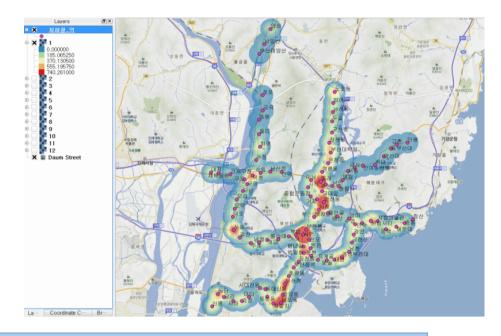

세종특별자치시 통계지도 시범구축(자료출처:http://www.sejong.go.kr/stat/sub01_01.do)

- ▶ 국토연구원 수시과제 연구로서, 세종특별 자치시를 500M*500M격자망으로 구획하여 마이크로 공간 DB구축 자료를 집계함
- ▶ 일반적인 행정구역의 스케일 적용에 따른 현황분석의 상이함을 없앨 수 있음

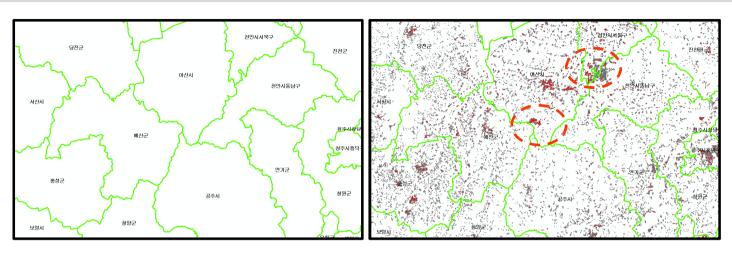

① 거주인구(2014년 7월 말 기준)

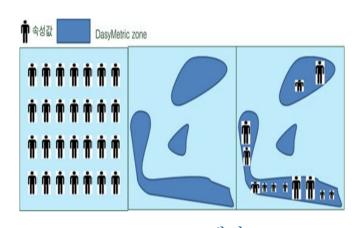
세종특별자치시 전체인구




세종특별자치시 통계지도 시범구축(자료출처:http://www.sejong.go.kr/stat/sub01_01.do)

◈ 시계열 특성기반 및 공간적 상세화를 통한 정책지도 컨텐츠 개발(예시)


시계열



농촌마을에는 기상상황 이나 계절에 따라서 달라지는 지표들은 없을까? 예를 들어 재해의 발생유무나 종류에 따라 특히 취약한 농작물을 기르는 지역은? 모기나 진드기가 많이 서식할만한 특정지역은? 또 이런 지역과 가까운 축사나 촌락의 분포는?

◈ 시계열 특성기반 및 공간적 상세화를 통한 정책지도 컨텐츠 개발(예시)

〈Dasymetric 개념도〉

자료 : 최돈정, 서용철, 김영섭.2011.벡터기반 대시매트릭매핑 기법을 이용한 소지역 장수인구 추정, 한국측량학회지, 29(5), pp. 479-485.

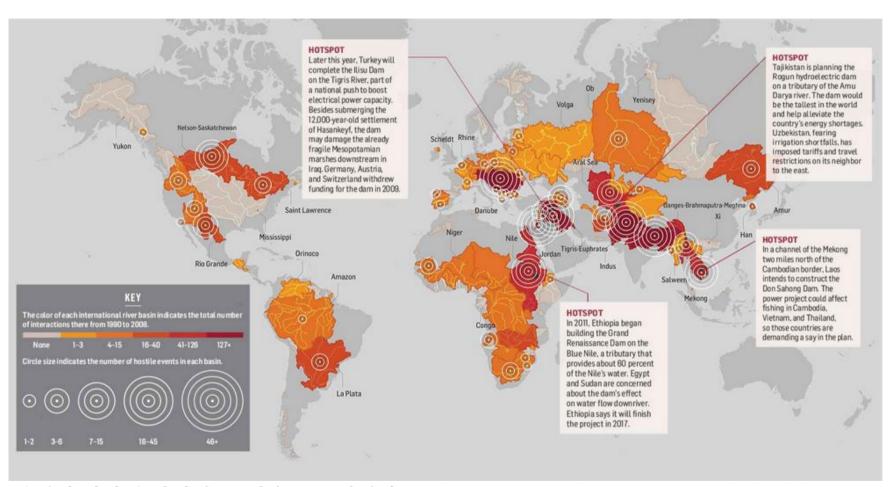
➤ Dasymetric Mapping Method

- ✓ Transformation of data from a set of arbitrary source zones to a dasy-metric map via the overlay of the source zones with an ancillary dataset
- ✓ Data ⇒ JipGyeGu Statistic Map(Census)

 Land Cover Map(Sub Spatial Map)

모든 지역에 사람이 살고 있지는 않다

e 행정경계와 경제활동 권역은 다를 수 있다.
실제로 사람이 사는 지역만을 고려해서 인구중심점
변화를 볼 수 있을까?
이러한 변화를 만드는 요소는 '어디에', '얼마나'
분포할까?


Dartmouth Atlas of Health Care

> 개요

- ✔ 다트머스 연구소 주도의 의료데이터 기반 정책지도 서비스
- ✓ 20여년간 수집된 약 100TB의 의료정보와 건강보험 자료를 기반으로 의료 수요자 중심의 서비스체계 구축
- ✔ "어디에 누가 사느냐에 따라 누릴 수 있는 의료혜택이 크게달라진다" 라는 의식에서 출발
- ✔ 환자들의 입원률이나 앰뷸런스 및 약물복용이용 등을 기록(병원별, 환자별 정보세분화)
- ✔ 미국 내 3,500만여 명의 노인 의료보험 수혜자들을 대상으로 시작, 65세 미만 환자들에 관한 데이터에도 주목

▶ 주요사항

- ✔ 'Analytics + GIS→ Web Service' 기반의 서비스 체계
- ✔ 모든 정보는 '동료평가를 거친' 보고서들과 '상당히 복잡한' 통계적, 지리적 분석을 거침
- ✔ 이러한 과정을 거친 결과는 반드시 '이해하기 쉽게 정리'
- ✓ 모든 연구자료는 서비스 인터페이스 내에 탑재: 2011년부터 약 60편의 연구논문 및 보고서 탑재(다양한 수요계층을 충족시키기 위함)
- ✔ GIS 및 공간분석 파트는 ESRI사와의 협업체계
- ✔ 국내판 다트머스 정책지도(국립 중앙의료원, 경상북도 건강지도)

물 분쟁이 심화될 지역과 그 이유는 무엇일까? 지도의원은 물로인한지역적 분쟁의 횟수를 나타내며 슬라이드 바는 해당지역의 하천을 공유하는 행정구역의 수를 나타냄

정책지도 구축전략 및 컨텐츠 개발방안

충남 정책지도 구축

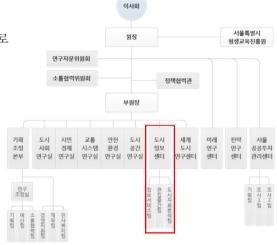
-마이크로 데이터, 지오인포그래픽스 그리고 타 연구원-


공간빅데이터와 지역 마이크로 데이터 지오 인포그래픽스

- 사회적 현안문제 해결을 위한 좋은 수단
- 개방 및 공유를 통해 합리적인 정책수립과 산업발전 유도
- 공공과 민간에서 모두 활용할 수 있는 공간 빅데이터 체계의 구축이 필요
- ◎ 우리나라의 경우 국가차원의 빅데이터 플랫폼이 이미완성 - 특히 1:5,000 수치지형도는 세계최고의 품질
 - 23개 중앙부처의 73개 시스템. 246지자체의 정보공유
- 따라서 국가 기본 빅데이터 +민간부문의 빅데이터를 통해 다양하고 의미있는 정책&민간 정보생산 가능
- 또한 지역에는 아직도 활용성에 비해 정제되거나 구축되지 못한 다양한 자료가 산재함
- ♡ 예를들어 국지단위의 인구분포, 농가 분포, 병의원. 정류장, 사고발생, 위해시설 등의 위치 및 속성정보
- ◎ 이러한 정보의 통합구축을 통한 데이터 분석은 기존의 통계자료보다지역연구에 효과적인 정보생산가능

- ◎ 인포그래픽 = What. Why. How에 대한 직관적 근거를 제공
- ◎ 지오인포그래픽 = 인포그래픽 + Where 에 대한 정보를 함께제공
- ◎ 데이터 마이닝, 디자인+ 공간자료 및 모델링 기법이 추가적으로

요구됨 🧠 미래 농업과 농업인의 여건 변화를 말한다. 🔦 가격과 양 중심의 소비


인포그래픽의 예시

지오 인포그래픽의 예시

타 연구원 사례(공간정보)

- □ 서울연구워 도시자료 분석팀
- → 다양한 도시자료분석 및 자료관리 업무
- → 워내 GIS관련 기술 지원 및 교육까지 담당

- ◎ 경기개발 연구원
 - → 별도의 공간정보 담당 부서는 두지 않았지만
 - → '공감도시연구실' 부서에 전담 연구위원 배치
- → '공간 및 지리정보관련 정책연구'를 명시적으로 부서의 주요업무중 하나로 안내하고 있음
- ◎ 이미 2000년대에 GIS자료구축 및 지도 제작을 수행
- ◎ 현재는 방재, 공간정보화에 관한 응용연구 수행중 ²³

충남 아틀라스 및 정책지도 구축 -전략 로드맵-

성과물 생성

고도화 및 추가컨텐츠 개발

기반환경 조성

아틀라스 DB구축 및 정책지도 방향설정

아틀라스 정책지도 지표설정 및 공가 모델링

피드백 및 성과홍보

- 마을단위 공간DB구축 완료 및 검수
- 국내 공간Data Base목록조사 및 분류
- 지자체 공공데이터 목록수집 및 협조체계
- 자문단회의 및 언론홍보 적극활용 (양질의 프로토 타입 필요함)
- ◎ 해외 유사사례 조사, 적용성 검토 및 도정시책과의 연계성 파악
- ◎ 분석목적에 따른 데이터수집 및 변화
- [□] Local Scale기반의 공간모델 검토
- ◎ Big-Data의 적용 및 효용성검토를 위한 워크숍 개최
- □ 계획도시, 환경, 정책, 공간정보, 인포그래픽 분야의 외부 자문단 구성
- ♥ 신속한 프로토타입 제작(3월말~4월초)
- ◎ 적극적인 자료의 개방 및 공유

- 정책지도 제작을 위한 데이터 허브 구축
- : 서울연구원, 경기 연구원 시스템 참고
- ◎ 정책지도 갱신을 위한 연구체계 마련
- □ 정책지도 제작의 필요성 및 타당성 화기
- 분야별 기본 주제도(입체적 매핑)
- ♥ 분야별 분석 주제도(입체적 분석)
- © Geo-Inforgraphic기반의 주제도
- ♡ 통계자료 구축 및 비교그래프
- ◎ 주제도별 정책제언을 포함한 지도책

- 데이터가 융합을 통한 신규데이터 산출
- ◎ 정성적 자료의 공간정보화
- ◎ 충남 Big-Data체계 구축
- ◎ 다양한 분야의 연구지원
- ◎ 공간특성 맞춤형 정책마련 및 의사결정
- ♥ 분야별 예측지도 구축
- □ 지역 맞춤형 분석모델 개발
- ◎ 정책지도→ 정책 연구지도로의 진화
- ◎ 기본계획 등의 도종합계획에 활용
- ◎ 충남 Geo-Inforgraphics 서비스
- 충남리포트, 언론보도 및 전문학술지 논문개제

24

충남 마을단위 아틀라스 정책지도 구축 - 정책지도 제작 과정-

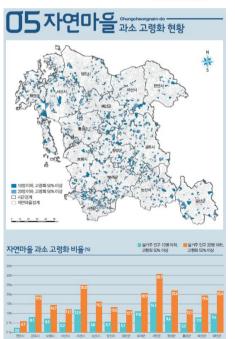
관련 기관 자료 수집

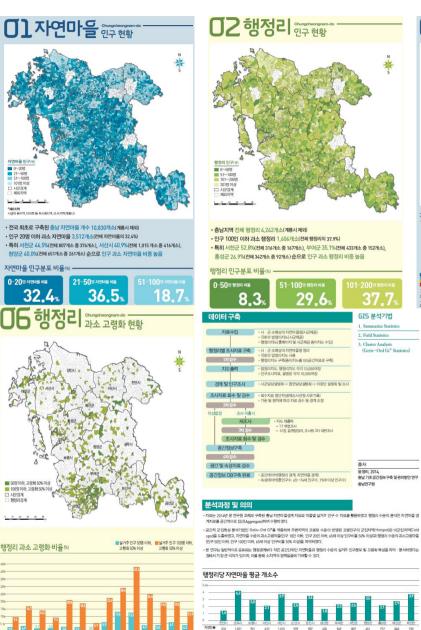
- ◎ 공공데이터 포털
- 재난정보공동활용시스템의 재난관련 정보
- 방재청 및 국립방재연구소 정보 등

정부3.0의 영향으로 방대한 양과 종류의 공간정보 구득가능

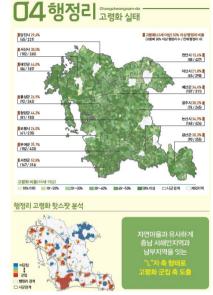
충남 마을단위 아틀라스 정책지도 구축사례(안) -교통 취약성 지도-

연구성과 활용 Output 2 Output 1 Input 대중교통 도로망도 도로밀도 지도 취약성 (수치지형도, 국가 표준 노드 링크) 대중교통 노선정비 및 지도 확충 주거지 자료 주거분포도 GIS & Data Fusion & Modelling (point 기반) BigData기반 공간정보 교통 인프라 실제 유동인구를 고려한 관련 삶의질 대중교통 결절자료 교통시설분포 상권확충 및 주요시설 취약성 (버스 정류소, 노선도) 입지 지도 평가 동적모델링 지도(동영상) Mobile Big-Data (이동통신 자료) 교통, 도시, 농촌, 환경, 지역별 유동인구 인구, 복지, 사회 등 기타 정보 … 발생요인 각종주제도 타분야로의 확장은 (학교, 마트, 사업체 등) 분포도 수많은 정책지도의 양산

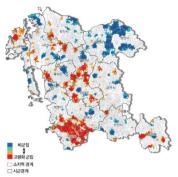

정책지도 발간사례 소개


Decision-Making Support Map 충남 정책지도 2015 창간호

총청남도 실거주 인구자료를 활용한 **마을 단위 인구분포**


충남연구원 농촌농업연구부 연구위원 cocodcni.re.kr 최돈정 · 김정하

- 본 연구는 국내에서 처음으로 '자연마음' 경 계와 실거주 인구 자료를 충남연구원 자체적 으로 구축하여 자연마음과 행정리의 '과소고 광' 이라는 화두를 주제로 공기분석 수형
- 자연마음'이란 시골에서 여러 가구가 모여 살면서 자연발생적으로 형성된 마음로 취락 과 통일한 '개념, 우리나라 형정의 공간적 위 계인 시교, 음면문, 법정리, 행정리 위계에서 행정리보다 더 작은 공간 단위가 자연마음입
- 데이터 구축 시점인 2014년 충남 전체 자연 마을 수는 10,800개소, 행정리 4,242개소이 며, 가장 않이 사용되는 자연마을 명은 아랫 말 80개소, 첫말 73개소, 종동, 새턴, 양지동 등이 600개의 마을에서 사용되고 있음(도 사항 자연과 구시자연인 개통시 제요)



- 2014년 진행된 충남 연구원 전략과제 '충남 기초공간정보 구축 및 관리방안 연구, 윤정미'의 연구결과를 토대로발간
- ▶ 자연마을과 행정리 수준의 인구분포 및 과소고령의 수 준차이가 공간단위에 따라 어떻게 차이가 나는지 확인하 고자 하는 목적에서 처음 시작
- 정책의 기본 단위인 행정리 수준 보다 작은 공간단위의 인구특성에 대해 파악하고 도에서 보유중인 각종 마이 크로 데이터와의 연계를 통해 다양한 정보를 생산할 수 있음.

Decision-Making Support Map 충남 정책지도 2015-2호

인구센서스 자료(2000~2010)와 연계한 충남 과소 · 고령마을 실태분석

유정미 충남연구원 농촌농업연구부 연구위원 coco@cni re kr

최도전 · 긴전하 충남연구원 농촌농업연구부 연구원

- 5년마다 구축되는 센서스 원시 자료인 거 처포인트 자료와 연계하여 충남 소지역 (11,217개, 계룡시 제외)에 대한 인구 분석
- · 2000년 2005년 2010년 인구분포 고령회 분포, 과소·고령인 한계마을의 분포 분석
- 부석결과 과소인구 (20명 이하) 소지역 분포는 2000년 22.9%, 2005년 27.6%, 2010년 30,0%로 비율증가
- 고령화 50% 이상 소지역 분포는 2000년 4.1%, 2005년 12.9%, 2010년 22.4%로
- · 과소 · 고령(20명 이하, 65세 이상 50% 이상) 한계마을은 2000년 3.3%, 2005년

고형화 핫스팟 분석 : 인접마을과의 고령화 표준절수 비교를 통해 상대적으로 고령바울이 높은 공간 군집지역(Hotspot)도출

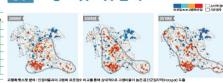
- 2010년 고령화 50% 이상 진행된 소지역은 2.509개소(소지역 11.217개 중 22.4%) 고령화 50% 이상 소지역은 서천군 41.0%, 청양군 32.8%, 부여군 27.3% 순으로 비중 높음

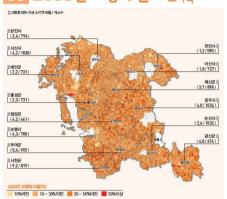
- 2000년 인구 20명 이하 과소 소지역은 2.568개소(소지역 11.217개 중 23.0%) 특히 서천군 31.6%, 공주시 29.1%, 서산시 29.1%, 청양군 27.1% 순으로 비중 높음
- 시부 평균 22.1%, 군부 평균 23.7%

 인구감소 50% 이상 진행된 소지역 분석 결과 2000년~2010년 1,175개소(10,5%) 도출 2000년~2005년 773개소(6.9%), 2005년~2010년 465개소(4.1%)

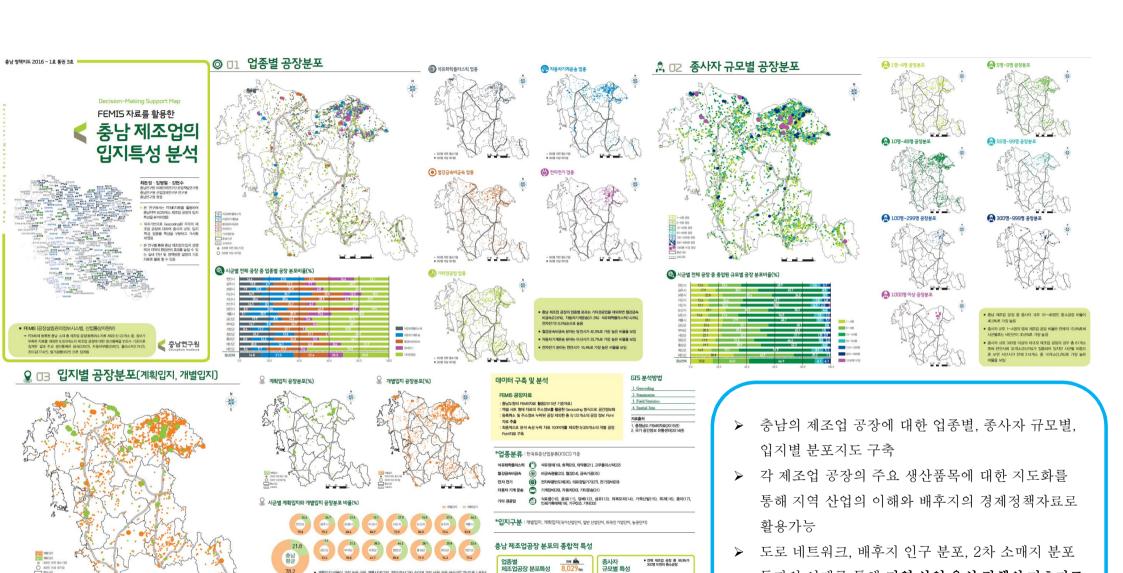
02 2010년 인구분포 소지역

- 2010년 인구 20명 이하 과소 소지역은 3.369개소(소지역 11.217개 중 30.0%)
- 특히 서천군 39.9%, 공주시 36.7%, 서산시 36.1%, 청양군 35.6% 순으로 비중 높음
- 시부 평균 28.3%, 군부 평균 32.0%


과소·고령마을 분포(한계마을)


- 2000년 한계마을 366개소(소지역 11,217개소중 3,3%), 2005년 848개소(7,6%), 2010년 1,251개소(11,2%) - 2000년 시부 평균 2 7개소 군부 평균 3 5개소
- 2005년 시부 평균 5.5개소, 군부 평균 9.4개소 2010년 시부 평균 8,2개소, 군부 평균 13,5개소

시군별 한계마을 분포 비율(%)


07 고령화 핫스팟 분석(65세이상)

03 2000년 고령화 분포 등세이상 비용

- 2000년 고령화 50% 이상 진행된 소지역은 456개소(소지역 11.217개 중 4.1%) 고령화 30% 이상 소지역은 서천군 43,6%, 청양군 34,6%, 금산군 32,5%, 공주시 31,0%, 부여군 30,9% 순으로 비중 높음
- 고령화 50% 이상 소지역은 서천군 9.2%, 청양군 6.2% 공주시 6.0% 순으로 비중 높음
- - 센서스 거처포인트 자료와 정책지도 1호의 자 연마을 경계 자료를 연계하여 정밀한 공간단 위의 **5년주기별 인구의 변동사항과 고령화의** 추이파악.
 - ▶ 2017년 센서스 자료 갱신 이후 타 자료와의 연 계를 통해 다양한 분석 가능.
 - 자연마을 수준의 환경 위해성 평가나 취약성 분석 시 정책 사각지역의 최소화 도모가능.
 - 정책 하위집단으로의 정보전달 기능 기대

③ 철강 금속 비급속 기계운송 22.6% 21.5% 볼 석유화학 클라스틱 14.8%

제 속 충청남도 싫거주 인구자료를 활용한 마음단위 인구분포

2016 - 18 문제 38 FPUS 자리를 활용하 충난 제공인이 인지를선 보선

지역적

분포특성

충남 정책지도 발간현황

3008 ols

1.1%

공장입지별 특성

개별입지에 대한 계획적 차원의 과리가 필요

A5-0980E A S488

83.1%

· 계획인지 비율이 가장 높은 곳은 계룡시(462%) 청양군(442%) 순이에 가장 낮은 곳은 공산군(7.7%)으로 나타남

☑ 종사자 규모별 개별입지와 계획입지 분포비교(%)

입지별/업종별 공장분포(%)

계획입지는 전체 공장의 21.8%

이중 300인 이상 대기업은 2.5%

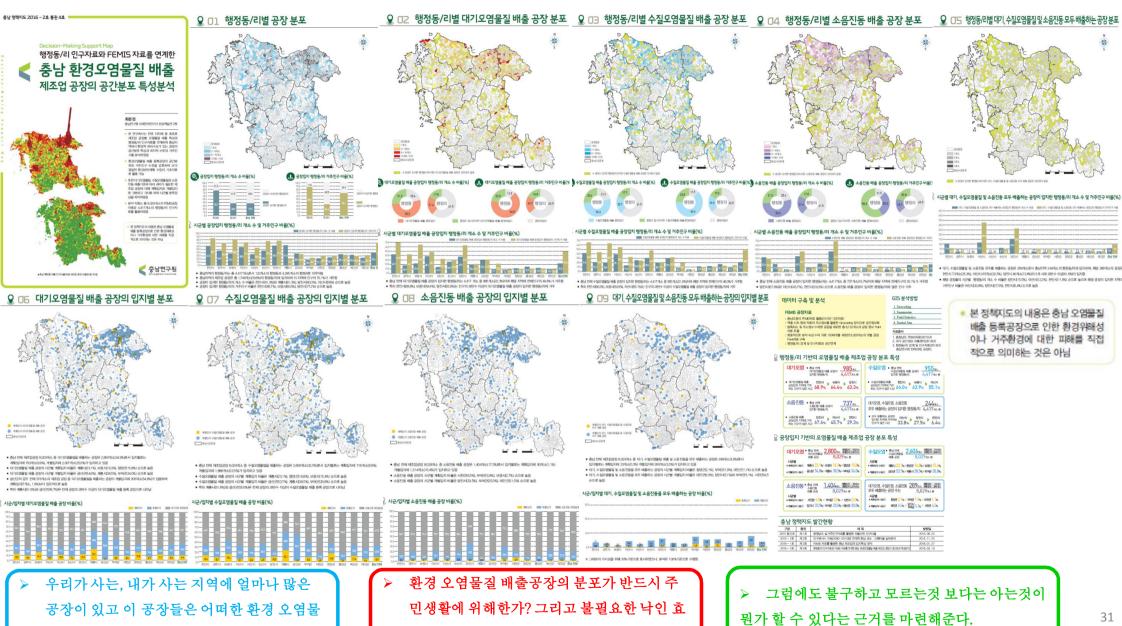
이중 300인 이상 대기업은 0.6%

300인 미만 중소기업은

개범입지는 전체 공장의

300인 미만 중소기업은

97.5%


78.2%

99.4%

30

등과의 연계를 통해 지역 산업 육성 정책의 기초자료

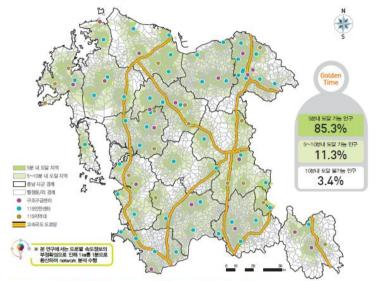
로 활용가능

과가 발생하지는 않을까?

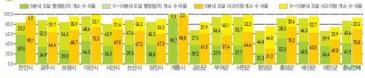
질을 배출할까?

31

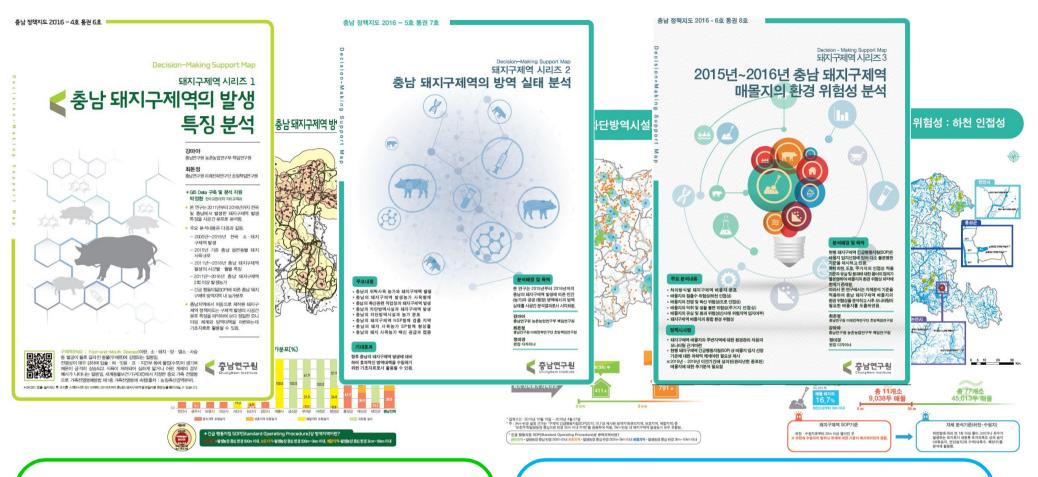
충남 구급사고 발생의 공간특성과 골든타임 분석


최돈정

충남연구원 미래전략연구단 초빙책임연구원


- 본 연구에서는 충남지역 구급사고 발생의 공간 특성과 사고현장 도착기준 골든 타임 분석을 수행하였음
- 이를 통해 행정동/리 차원의 국지적 공간 단위에서 구급사고에 대비하기 위한 정책 모니터링 및 계획 수립에 기여할 수 있음
- 주요 분석 내용으로는 구급사고 발생 건 수와 인구대비 발생률을 통해 사고 다발 행정동/리를 추출하였음
- 또한 구급사고의 사고 종류별 분포, 고령 인구 구급사고의 공간분포를 파악하였 으며 네트워크 거리 기반의 골든타임 분석을 수행하였음
- 분석에 활용된 자료는 총청남도 소방 방재센터에서 제공한 2012년~2014년 약 33만전의 구급사고 이력 자료 중 주 소정보 누리자료를 제외한 정상 출동건 279,409건을 활용하였음

🤲 🗀 구급센터로부터 골든타임 분석


시군별 골든타임내 도달가능한 행정동/리 개소 수와 사고지점의 비율(%)

- 도로 네트워크 기반의 골든타임 분석 결과 총남 전체 행정동/리 4,417개소 중 3,777개소/85,55%), 전체 사고지점 279,409개소 중 260,719(93,3%)개소가 구급센터에서 10분인에 도달가능한 것으로 나타남
- 시근별 골든타임내 도달가능한 행정동/리 개소 수 비율의 경우 계룡시(100%), 이산시(94,7%), 부여군(94,5%) 순으로 높게 나타남
- 시군별 골든타임내 도달가능한 구급사고 지점 수 비율의 경우 계룡시(100%), 이산시(95.4%), 서천군(97.6%) 순으로 높게 나타남
- 전체 4,417개소의 행정통/리 중 3,777개소(85.5%)가 구급센터에서 10분내 도달가능하고 이 지역에 전체 인구의 96.6%가 거주하고 있는 것으로 나타남

- ▶ 정책지도에 대한 실국의 관심 발생
- 분석 데이터 및 컨텐츠 설명에 관한 요청 받음(충남 소방본부)
- ➢ 충남 소방안전 사고와 인프라의 공간 배 치에 관한 정책지도 시리즈 발간의뢰
- ▶ 현재 소방본부 내부 & 연구원의 정책지 도 발간 TF팀 회의 진행 중
- ▶ 공동의 연구(논문) 작성 및 과제 도출을위한 논의 진행

- ▶ 충남도축산과의 요청으로 '돼지 구제역 정책지도 시리즈' 발간
- ▶ 정무부지사 보고회, 실국과의 업무협의를 거친 협업체계 구축
- ▶ 원내에서는 농촌농업 연구부, 미래전략연구단의 학제간 융합체계
- 충남도 축산과, 충남 가축위생 방역본부, 수의사협회, 축산농가의 공 동 워크샵 개최 및 관련 내용 협의
- ▶ 정책지도를 통해 '충남 양돈 농가의 환경 DB통합구축'수탁발주

- 더 이상의 이슈메이킹이 아닌 실제 정책 지원도구로써 진화
- 추후 발생할 수 있는 구제역 상황 시 방역과 백신 접종 등의 기초자 료로 활용
- 민감할수 있는 정보지만 대민 정보 지원과 즉시 수행 가능한 정책발굴
- ▶ 발간 과정에서의 이해 당사자간 협업체계 공고히 할 필요 있음

시사점 및 충남 정책지도 고도화를 위한 제언

충남 정책지도 추후 발간목록

1. 충남 소방분야 화재, 안전사고 발생특성과 인프라 공급 효율성 분석 시리즈

- 현재의 소방 관서별 관할 구역과 인프라의 배치가 사고 종류별, 상황별 시나리오에 따라 가변적일 수 있으므로 골든타임을 기준으로 사고 시나리오별 잠재 관할구역을 새롭게 분석하고 소방인프라의 적정 배치정책의 근거자료로 활용

2. 빅데이터 기반의 충남 민원특성 분석

- 국민 신문고, 도청 민원실로 접수된 민원사례와 SNS정보를 분석하여 도민의 정책수요를 공간적으로 가시화

3. 충남 교통사고 발생과 응급의료 골든타임 분석

- 시계열 교통사고 자료를 기반으로 4가지 위계별 응급의료 기관까지의 골든타임 가능여부를 분석

4. 위성자료를 활용한 충남의 식생분포 변화분석

- 2~30년간의 식생지수와 토지피복의 변화를 통해 인위적인 개발지역 이외의 자연 변화지역 탐지
- 인구변화, 농경지 변화등을 통해 충남의 지역 공간구조 변화양상 분석

5. 위성자료를 활용한 충남의 해양환경 분석

- 해수면 온도자료, 연안 온도자료, 어종, 어획량등의 다양한 자료 연계하여 연안을 포함한 해양환경특성 분석

6. 충남의 장수인구 분포와 생활편의성 분석

- 지역의 성별 장수인구 분포와 문화, 복지, 의료등의 접근성 분석을 통해 취약지역 도출

6. 충남의 대중교통 취약지역 분석

- 버스노선과 마을단위 인구분석을 통해 국지적 수준의 충남 대중교통 취약지역 도출

- ▶ 2015센서스 거처포인트 자료 업데이트 시 순차적인 갱신
- ▶ 지속적인 분석아이템 개발 필요
- ▶ 권호별 연계방안 검토
- ▶ 시군단위나 권역(생활권) 단위의 분석 결과 도출 필요
- ▶ 자료관리 및 개방에 관한 논의 필요

 \bigcirc

시사점

정책지도 구축사업의 차별성

- ❖'필수적 Downscaling'
- ❖자료간의 연계
- ❖ 고차원의 분석이 필요한가?
- ❖활용성은 '대민서비스 < 정책지원'
- ❖→ 데이터 품질이 보장되는 산출물로 대체가능(공간자료)

융합체계의 중요성

- → 마이크로 DB와 마이크로 공간 DB의 연계
- → 비공간 자료의 공간화
- ❖ 다원화된 자료 관리 체계간의 협업 및 데이터 공유
- ❖ '학제간', '주체간' 융합체계 구축을 통한 노력이 필요
 - → 모든것은 변한다. So………

수요 응답형 정책지원도구로 진화

- → 공간정보를 통한 의사소통
- ❖ 주기적인 **정보의 갱신** 필요
- ❖ 서비스 제공자의 관점 + 수혜자의 관점
- ❖ 이슈 메이킹 --> 이야깃 거리의 제공이 필요

고도화

연구적 접근의 필요성(사후)

- → 데이터 품질이 보장되는 산출물로 대체가능(공간자료)
- ❖ 어디에서 대화할 것인가?
- ❖ 어떤 방식으로 대화할 것인가?
- ❖ 결과물을 더욱더 신뢰성 있게 만들 방안은?
- → 자료의 가용성은?
- → 연구인프라는 적절한가?

◆ 제언 1_ 정책지도 발간 TF팀의 체계화

1. 민관 협력의 아이템 발굴과 정보 공유시스템

- 소통형 정책지원 체계 마련
- 정책효과의 불확실성 상쇄

2. 축적되는 자료의 관리 및 활용방안 강구

- 충남형 정책지원 빅데이터 체계 구축
- 센서스 자료로 구현이 불가능한 다양한 지역 현상에 대한 통찰시스템 구축

3. 연구인력과 기능의 마련필요

- 데이터 과학을 통한 정책 수요발굴 전문가 유치
- 전담 연구기능을 수행할 집단지성 필요

제언 2_ 수요 응답형 커뮤니티 매핑 체계 구축

- 충남도, 연구원-

- 위치자료, 각종 분석결과 등록
- 의견 수렴한 분석주제 설정 및 정책지도 제작
- Social Data base 구축 및 분석
- ▶ 공동의사결정 체계 구축
- ▶ 지속적인 이슈제공

- 커뮤니티-

- ▶ 분석결과에 대한 의견 탑재, 정책제안
- ▶ 분석결과에 대한 Social Data 제공
- ▶ 현장의 비정형 정보 수집 및 제공
- ▶ 정책 Needs 제공

감사합니다.