지역자원시설세 과세 불공정 시정을 위한 충남의 대응방안

2017. 03. 17

정 종 필 (지방행정연수원)

목 차

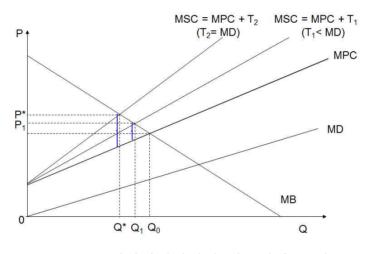
Ι.	서 론1
Ⅱ.	석탄화력발전에 대한 과세 확대 필요성
Ⅲ.	에너지 및 발전부문 과세 현황과 문제점
IV.	과세불공정 시정을 위한 대응방안
V	요약 및 결론18

I. 서론

- 2016년 세계경제포럼에서 제4차 산업혁명이 주요한 화두로 대두되면 서 제4차 산업혁명을 야기하는 동인을 기술적 측면의 변화와 사회・ 경제적 측면의 변화로 파악함
- 사회·경제적 측면의 주요 변화 동인으로 업무환경의 변화, 신흥시장에서의 중산층, 기후변화/천연자원, 지정학적 불안감의 증가 등이 꼽힘
- 기술적 측면의 주요 변화 동인은 모바일 인터넷/클라우딩 기술, 연산 능력/빅데이터, 새로운 에너지 공급 및 기술, 사물 인터넷, 인공지능 등임
- 석탄화력발전에 따른 환경문제와 석탄화력발전의 대체 문제는 제4차 산업혁명의 주요 변화 동인인 기후변화 및 새로운 에너지 공급 및 기 술과 밀접한 관련이 있음
- 석탄화력발전은 2016년 기준으로 총 발전전력량의 36.4%로 가장 높은 비중을 차지하고 있어 우리나라 에너지 공급의 중추 기능을 담당함
- 그러나 석탄화력발전 과정에서 많은 온실가스와 미세먼지를 발생시 킴에 따라 환경오염 및 기후변화의 주요한 원인으로 작용함
- 선진국들은 석탄화력발전에 따른 환경오염 완화를 위해 석탄화력발 전에 대한 규제를 강화하거나 장기적으로 석탄화력발전 감축 및 폐 쇄를 결정함
- 우리나라도 에너지 생산 및 소비단계에서 발생하는 외부비용을 내부 화하기 위하여 다양한 조세와 부담금을 부과하고 있는데 전반적으로 수송부문에 대하여 높은 과세, 발전부문에 대하여 낮은 과세를 하고 있음
- 석광훈(2016)은 수송부문에서는 환경비용 대비 약 7조 8천원을 초과 과세하고 있고 발전부문에 대해서는 환경비용 대비 약 11조 2천억원

- 의 추가 과세가 필요한 것으로 주장함
- 에너지세제가 전반적으로 왜곡되어 있는 상황에서 석탄화력발전의 외 부비용이 제대로 반영되고 있지 못함
- 우리나라의 에너지 세제는 수송부문에 대한 과세는 환경비용 대비 초과과세하고 있는 반면에 발전부문에 대한 과세는 과소과세하고 있어 에너지 소비의 왜곡이 발생하고 있음(석광훈, 2016, 이종수, 2017)
- 발전원간의 지역자원시설세 과세에 있어서도 불공정 상황이 발생하고 있음
- 화력발전 및 원자력발전의 외부비용이 수력발전에 비해 훨씬 많이 발생하는데도 불구하고 화력발전 및 원자력발전에 대한 지역자원시설세는 각각 0.3원/kWh 및 1.0원/kWh에 불과함
- 따라서 발전원에 대한 지역자원시설세 과세의 불공정 시정 및 왜곡된 에너지세제 개편을 위해 석탄화력발전에 대한 과세 강화가 요구됨
- 2017년에 제8차 전력수급계획 및 제3차 에너지기본계획수립이 예정 되어 있으며, 이를 앞두고 에너지세제 개편에 대한 논의들이 제기되 고 있음
- 본 연구는 발전부분에 대한 지역자원시설세 과세 불공정 시정을 위한 대안 마련을 위해 다음의 내용들을 검토함
- 석탄화력발전의 외부성 검토
- 에너지 세제 및 발전부분 과세 현황과 문제점
- 과세불공정 시정을 위한 대응방안

Ⅱ. 석탄화력발전에 대한 과세 확대 필요성


1. 이론적 근거

○ 석탄화력발전에 대한 과세 근거는 외부성의 측면에서 찾을 수 있음

- 사적 경제활동 과정에서 외부불경제가 발생할 경우 시장가격은 사회적 비용을 제대로 반영하지 못하기 때문에 자원의 낭비 또는 비효율적 자원배분이 발생함
- 외부불경제를 야기하는 경제주체에게 한계외부비용에 상응하는 조세를 부과하게 되면 경제주체는 이러한 조세부담을 비용으로 인식하게 되고 경제주체는 사적비용과 조세를 합한 사회적비용을 감안하여 경제활동을 조정함
- \circ <그림 1>을 이용하여 이와 같은 상황을 간단하게 설명할 수 있는데, 그림에서 MB와 MPC는 각각 사적 한계편익과 사적 한계비용을 의 미함
- MD는 외부불경제 유발시설로 인해 발생하는 외부비용을 나타내며 SMC는 사적 한계비용과 외부불경제 유발시설로 인한 한계외부비용 (MD)을 합한 사회적 한계비용을 나타냄
- \circ 한계외부비용을 고려한 사회적 최적 공급량은 사회적 한계비용과 한 계편익이 일치하는 Q^* 수준
- 해당 재화의 공급 주체는 외부불경제 유발시설로 인해 발생하는 외부비용을 고려하지 않고 사적 한계비용만을 고려하므로 시장공급량은 Q_0 에서 결정됨
- 결과적으로 외부불경제가 발생하는 재화의 경우 사회적 최적 수준에 비해 과다 공급 $(Q^* < Q_0)$ 됨
- \circ 이러한 문제를 내부화하는 방안은 외부불경제 유발시설로 인해 발생하는 한계외부비용에 상응하는 조세 (T_2) 를 부과하는 것임
- 재화의 공급 주체에게 조세를 부과하면 사적한계비용이 증가하여 사회적 최적수준에서 균형이 달성됨
- 조세부과 후 경제주체는 사적한계비용(MPC)과 조세 (T_2) 를 합산한 $MPC+T_2$ 와 MB가 일치하는 Q^* 수준만큼 생산하여 사회적 최적수준

에 도달하게 됨

- \circ 현재의 과세 수준이 사회적 한계비용에 미치지 못할 경우($T_1 < MD$), 석탄화력발전에 있어서 외부불경제는 완전하게 내부화되지 못함
- 따라서 석탄화력발전으로 인하여 발생하는 외부비용을 다양한 방법 으로 평가하여 현재의 과세수준과 비교할 필요가 있음
- 발전용 연료 및 에너지원의 외부비용에 대한 다양한 연구(시장경제연구원, 2013; 한국자원경제학회, 2013; 서울대학교, 2016; 석광훈, 2016: 유승훈, 2017)들은 대체로 석탄화력발전에 대한 과세 수준이 낮아 외부비용을 완전히 내부화하지는 못하는 것으로 평가하고 있음

<그림 1> 석탄화력발전의 외부성과 조세

2. 석탄화력발전의 외부성

- 2016년 기준 총 발전전력량은 52만 8,839GWh으로 2006년 38만 1,181GWh 대비 1.4배 증가함
- 에너지원별 발전전력량 현황을 살펴보면, 2016년 기준으로 석탄화력이 19만 2,716GWh로 총 발전전력량 대비 36.4%로 가장 높은 비중을 차지함
- 그 다음으로 원자력이 16만 2,176GWh로 전체 대비 30.7%를 차지하

여 석탄화력과 원자력이 총 발전전력량에서 67.1%를 점유함

- 석탄화력발전의 전체 발전전력량 대비 비중 추이를 보면 2006년 36.5%에서 2009년에는 44.6%까지 증가하였으며, 이후 점차 감소하여 2016년에는 36.4%를 보이고 있음
- 석탄화력발전의 비중이 점차 감소하고 있으나 여전히 가장 높은 비 중을 차지하고 있어 우리나라 발전에 있어 중추적인 역할을 담당하고 있음

<표 1> 에너지원별 발전전력량 현황

(단위: GWh, %)

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
수 력	5,219	5,042	5,561	5,641	6,472	7,831	7,651	8,543	7,820	5,796	6,622
T 4	(1.4)	(1.3)	(1.3)	(1.3)	(1.4)	(1.6)	(1.5)	(1.7)	(1.5)	(1.1)	(1.3)
석탄화력	139,205	154,674	173,508	193,216	197,916	200,124	198,831	200,444	203,446	204,230	192,716
여단외역	(36.5)	(38.4)	(41.1)	(44.6)	(41.7)	(40.3)	(39.0)	(38.8)	(39.0)	(38.7)	(36.4)
유류화력	16,598	18,131	10,094	14,083	12,878	12,493	15,156	15,752	24,950	31,616	37,176
开开科号	(4.4)	(4.5)	(2.4)	(3.2)	(2.7)	(2.5)	(3.0)	(3.0)	(4.8)	(6.0)	(7.0)
가스화력	68,302	78,427	75,809	65,274	96,734	101,702	113,984	127,724	114,654	100,783	110,711
기느와딕	(17.9)	(19.5)	(17.9)	(15.1)	(20.4)	(20.5)	(22.4)	(24.7)	(22.0)	(19.1)	(20.9)
원자력	148,749	142,937	150,958	147,771	148,596	154,723	150,327	138,784	156,407	164,762	162,176
전 사 딕	(39.0)	(35.5)	(35.7)	(34.1)	(31.3)	(31.1)	(29.5)	(26.8)	(30.0)	(31.2)	(30.7)
집 단	2,597	3,084	5,336	5,827	8,080	12,429	13,061	14,633	_	_	_
当 ゼ	(0.7)	(0.8)	(1.3)	(1.3)	(1.7)	(2.5)	(2.6)	(2.8)			
대 체	511	829	1,090	1,791	3,984	7,592	10,563	11,267	14,695	20,904	19,436
네 제	(0.1)	(0.2)	(0.3)	(0.4)	(0.8)	(1.5)	(2.1)	(2.2)	(2.8)	(4.0)	(3.7)
합 계	381,181	403,124	422,355	433,604	474,660	496,893	509,574	517,148	521,971	528,091	528,839
H 세	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)

자료: 한국전력공사, 전력통계속보, 2016.12.

- 에너지원별 정산단가 추이를 살펴보면, 2006년 평균 1kWh당 81.60원에서 2012년 140.11원까지 증가하였다가 이후로 하락하여 2016년은 93.20원임
- 에너지원별로는 2016년 기준으로 원자력이 67.91원/kWh로 가장 저렴하며 그 다음으로 유연탄 78.05원/kWh, 무연탄 88.70원/kWh 순서임
- 2006년부터 2016년까지 원자력, 유연탄, 무연탄의 경우 평균적인 정산 단가 이하를 보이고 있어 다른 에너지원과 비교하여 직접적인 경제 성은 더 높은 것으로 평가됨
- 따라서 에너지원 사용에 따른 외부성을 고려하지 않을 경우, 원자력

과 석탄에 의한 발전에 의존하고자 하는 유인이 강하게 작용함

<표 2> 에너지원별 정산단가 현황

(단위: 원/kWh)

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
원자력	38.13	39.40	39.02	35.56	39.61	39.12	39.52	39.03	54.88	62.69	67.91
유연탄	38.43	40.93	51.15	60.23	60.79	67.13	66.25	58.84	65.13	70.99	78.05
무연탄	54.59	65.37	117.55	109.10	110.05	98.55	103.79	91.65	91.11	107.69	88.70
평 균	81.60	89.03	124.97	105.49	120.43	122.21	140.11	130.12	127.80	108.45	93.20
유 류	116.73	118.30	194.43	147.24	184.60	225.82	252.96	221.70	221.24	150.29	109.50
LNG	102.95	104.75	143.75	129.54	128.07	142.37	168.11	160.75	160.90	126.34	100.09
양 수	136.80	163.31	196.78	149.70	202.61	168.83	213.93	204.22	171.63	132.75	106.21
기 타	83.57	91.16	132.11	107.09	117.31	113.64	136.18	134.63	129.72	108.37	101.92

자료: 한국전력거래소, 전력통계정보시스템, 2016.12.

- 실제 전력 생산에 있어서는 직접적인 발전 비용뿐만 아니라 다양한 외부비용이 발생함
- 전력 생산단계에서 발생하는 외부비용을 체계적으로 평가하기 위해 EU위원회(EU Commission)와 미국 에너지부(US Department of Energy; DEO)는 1990년대 초부터 2005년까지 공동으로 ExternE 프로 젝트를 수행함(EU Commission, 2005)
- ExternE 프로젝트에서는 외부비용을 다음과 같은 네 가지 유형으로 구분함
- 첫 번째는 환경적 충격(environmental impact)으로서 화학물질이나소음, 방사선, 열 등이 대기, 토양 및 수원에 방출됨으로써 발생하는데, 이는 결과적으로 인간, 동식물, 물질 및 생태계에 위험과 피해를 초래함(환경적 비용)
- 두 번째는 지구온난화 충격(global warming impact)으로서 온실가스 의 배출로부터 발생함(지구온난화 비용)
- 세 번째는 예기치 못한 사건으로 인해 발생하는 사고(accidents)에 따른 충격으로서 공공에 미치는 영향과 작업자에게 미치는 충격으로 구분됨(사고 비용)

- 네 번째는 에너지 안보(energy security) 측면의 충격으로서 예기치 못한 에너지원의 획득 가능성의 변화나 가격 변화에 따른 충격을 의 미함(에너지 안보 비용)
- 유럽의 발전원별 외부비용을 살펴보면, 풍력이 0.1~0.2 EUR-cent/kWh로 가장 낮으며, 그 다음으로 원자력이 수력과 비슷한 0.4 EUR-cent/kWh임
- 반면, 석탄과 석유는 원자력의 10~17.5배 수준인 4~7EUR-cent/kWh로 매우 높게 나타남

<표 3> 발전원별 외부비용 산정 결과

(단위: EUR-cent/kWh)

국가	석탄	석유	천연가스	원자력	Biomass	수력	풍력
Australia			1~3		2~3	0.1	
Belgium	4∽15		1~2	0.5			
Germany	3~6	5∽8	1~2	0.2	3		0.05
Denmark	4∽7		2~3		1		0.1
Spain	5∽8		1~2		3∽5		0.2
Finland	2~4				1		
France	7~10	8~11	2~4	0.3	1	1	
Greece	5~8	3∽5	1		0~0.8	1	0.25
Ireland	6~8						
Italy		3~6	2~3			0.3	
Netherlands	3~4		1~2	0.7	0.5		
Norway			1~2		0.2	0.2	0~0.25
Portugal	4∽7		1~2		1~2	0.03	
Sweden	2~4				0.3	0~0.7	
U.K.	4∽7	3∽5	1~2	0.25	1		0.15
Average	4∽7	4∽7	1~2	0.4	1.2~1.6	0.4~0.5	0.1~0.2

자료: www.externe.info; Atomic Energy Society of Japan, 2010에서 재인용함.

- 외부비용 가운데 일부는 발전단가에 반영되나 다음과 같은 비용은 제 대로 반영되고 있지 않거나 발전원별로 반영여부가 차이가 있음(한국 전력거래소, 2014)
- 연료가격에 반영되지 않은 이산화탄소, 대기오염 등의 외부비용
- 원자력발전의 중대사고로 인한 위험비용
- 화력 발전소의 해체비용

- 발전원별 수용성과 입지로 인한 송전망 건설비용 및 사회적 갈등비용
- 한국자원경제학회(2013)의 주요 발전원별 외부비용 산정결과를 보면, 사후처리/시고비용을 반영하지 않은 총 외부비용은 석탄화력이 51.7 원/kWh로 LNG 6.3원/kWh 및 원자력 7.1원/kWh의 7.3~8.2배로 가 장 높음
- 원전의 사후처리/사고비용은 포함한 총 외부비용이 36.5~72.6원/kWh 수준으로 평가되는데 석탄화력은 사후처리/사고비용을 반영하지 않 아도 51.7원/kWh으로 원전의 총 외부비용과 비슷한 수준임

<표 4> 국내 발전원별 외부비용 산정 결과

(단위: 원/kWh)

구분	석탄화력 석탄화력	LNG(복합)	원자력		
T亚	역단와역	LNG(雪智)	(b) 제외	(b) 포함	
환경비용(a)	44.7	3.2	3.2	3.2	
사후처리/사고비용(b)	0	0	_	29.5~65.6	
사회적 수용 비용(c)	6.7	3.1	3.8	3.8	
총 외부비용(a+b+c)	51.7	6.3	7.1	36.5~72.6	

자료: 한국자원경제학회(2013).

Ⅲ. 에너지 및 발전부문 과세 현황과 문제점

1. 에너지세제 현황과 문제점

- 각종 에너지원에 대해서는 국세, 지방세 및 다양한 부담금이 차별적 으로 과세되고 있음
- 내국세로는 개별소비세, 교통·에너지·환경세, 교육세, 부가가치세를 과 세하며 지방세로는 주행분 자동차세를 과세하고 있음
- 부담금으로는 수입부과금, 판매부과금, 안전관리부담금, 품질검사수수 료 등을 부과하고 있음
- 각 에너지원별로 구체적인 과세 현황을 살펴보면, <표 5>에서 보듯이

수송용 석유류인 휘발유와 경유에는 각각 529원과 375원의 교통·에너지한경세를 과세하여 다른 에너지원에 비해 상대적으로 높은 세율을 적용하고 있음

- 반면 휘발유와 경유를 제외한 다른 에너지원에는 개별소비세를 과세하고 있는데 중유 17원, 부탄가스 275원, 유연탄 24원 등 상대적으로 낮은 세율로 과세하고 있음
- 한편 휘발유와 경유에는 지방세인 주행분 자동차세를 각각 137.5원과 97.5원을 과세하고 있음
- 이외에도 교육세와 각종 부담금 등이 과세되고 있어 현재의 에너지 원에 대한 과세체계는 다층적이고 매우 복잡한 구조를 가지고 있음 (정종필, 2015)

<표 5> 에너지 세제 현황

		휘발유	경유	등유	중유	LPG(원/Kg)	LNG	우라늄	유연탄	기과
		(원/L)	(원/L)	(원/L)	(원/L)	부탄	프로판	(원/Kg)	(원/Kg)	(원/Kg)	전력
관세	기본	3%	3%	3%	3%	3%	3%	3%	_	0%	_
선세	할당	3%	3%	3%	3%	2%	2%	2%	_	0%	_
개별	기본	_	_	(90)	(17)	(252)	(20)	60	_	241)	_
소비세	탄력	_	_	63	17	275	$14^{2)}$	(42)	_	27/21 ³⁾	_
교통에너	기본	(475)	(340)	_	_	_	_	_	_	_	_
지환경세	탄력	529	375	-	_	_	-	_	_	_	_
교육	세	79.4	56.2	9.5	2.6	41.3	_	_	_	_	_
부가기	l·치세	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
수입부	과금	16	16	16	16	_	_	24.2	_	_	_
판매부	-과금	36 ⁴⁾	_	_	_	62.3	_	_	_	_	_
안전관리	부담금	_	_	_	_	4.5	4.5	4.8	_	_	_
품질검시	수수료	0.47	0.47	0.47	0.47	0.03	0.03	_	_	_	-
전력산업기	기반기금	_	_	_	_	_	_	_	_	_	3.7%
주행세(>	지방세)	137.5	97.5	_	_	_	_	_	_	_	_

- 주: 1) 발전용 유연탄에 한하여 과세되며 2017년 4월부터 30원/Kg으로 인상됨.
 - 2) 가정 및 상업용에 한하여 탄력세율 적용.
 - 3) 순발열량 500Kcal/Kg 이상인 경우 27원/Kg.
 - 4) 고급휘발유에 한하여 부과.

자료: 기획재정부, 산업통상자원부(2017).

○ 에너지원에 대한 조세징수현황을 살펴보면, 2013년 기준으로 지방세 3조 4,355억원을 포함하여 총 25조 347억원을 징수함

- 국세는 개별소비세, 교통·에너지·환경세, 교육세, 부가가치세 등을 통하여 2009년에 20조 8,611억원을 징수하였고, 이후로 매년 21조원 내외를 징수하여 2013년까지 110조 4,285억원의 세수입을 조달함
- 지방세인 주행분 자동차세는 2009년 3조 2,870억원을 징수한 이후 매년 3.2조원 정도를 징수하여 최근 5년 동안 16조 4,780원을 징수함
- 에너지원에 대한 지방세 징수실적은 국세대비 약 15% 수준에 그치고 있으며, 주행분 자동차세에서 운수업자 유류세보조금을 제외할 경우 순수 자치단체분은 4조 4,695억원에 불과하여 국세대비 4%수준임
- 에너지원별로 과세 현황을 살펴보면, 2013년 기준으로 석탄에 대한 개별소비세, 교통에너지환경세, 부가가치세 등 국세 징수실적은 없 음1)
- 대부분의 조세가 수송용 에너지인 휘발유, 경유에 대하여 과세되고 있음
- 석광훈(2016)에 의하면 2013년 기준으로 수송용 연료에 대해 19.0조원을 과세하였고 발전용 연료에 대해서는 3.3조원을 과세한 것으로 나타남
- 제2차 에너지기본계획상의 에너지세제 정책은 당초 연간 5조원 규모 의 유연탄 과세를 최종 소비자에게 전가하여 유연탄 사용을 억제하고 자 함
- 그러나 과세의 편리성과 부담 주체의 수용성 등을 감안하여 발전사 업자가가 연간 1.7조원 정도를 부담하는 규모로 과세가 이루어져 당 초 계획한 외부성 교정효과는 미흡한 실정임(전의찬, 2017)
- 현재의 에너지과세는 수송용 유류에 대한 과세(특히 교통에너지환경 세) 비중이 월등히 높고 상대적으로 외부비용이 큰 발전용 에너지(석 탄, 원자력)에 대한 과세 비중은 낮은 실정임

¹⁾ 유연탄에 대한 개별소비세는 2014년 7월에 도입되어 발전용에 한하여 과세하고 있으며 무연탄에 대해서는 과세하고 있지 않음.

- 향후 에너지원별 외부비용을 적절히 반영한 에너지세제 개편이 요구 됨

<표 6> 에너지원에 대한 국세 및 지방세 과세 현황

(단위: 백만원, %)

			2009	2010	2011	2012	2013	합계
		등유	342,721	420,044	357,856	306,427	275,124	1,702,172
		중유	123,178	120,213	98,576	55,122	22,447	419,536
	개별	프로판	13,900	14,915	16,651	15,676	14,982	76,124
	소비세	부탄	549,518	462,281	440,781	422,192	416,743	2,291,515
국세		천연가스	21,426	24,425	17,180	17,459	20,444	100,934
<u>ጎ</u> ^ሀ		소계	1,050,743	1,041,878	931,044	816,876	749,740	4,590,281
	교통에너지환경세		12,330,334	12,902,769	12,992,205	13,229,818	12,647,913	64,103,039
	교 육 세		1,849,546	1,935,411	1,948,823	1,984,473	1,897,187	9,615,440
	부가가치세		5,630,551	6,100,240	6,975,416	7,109,153	6,304,375	32,119,735
	합 7	削(A)	20,861,174	21,980,298	22,847,488	23,140,320	21,599,215	110,428,495
지		보전분 (B)	844,200	844,200	844,200	946,343	990,531	4,469,474
시 방 세	주행분 자동차세	유류세 보조	2,442,872	2,324,908	2,396,870	2,398,862	2,445,032	12,008,545
^II		소 계 (C)	3,287,072	3,169,108	3,241,070	3,345,205	3,435,563	16,478,019
	B/A		4.05	3.84	3.69	4.09	4.59	4.05
	C/A		15.76	14.42	14.19	14.46	15.91	14.92

주: 부가가치세는 에너지원별 과세표준에 단위당 부가세액을 곱하여 산정함.

자료: 국세청, 「국세통계연보」, 각 년도; 행정자치부, 「지방세통계연보」, 각 년도.

2. 발전부문 과세 현황과 문제점

- 발전원별로 다양한 조세와 부담금이 부과되고 있는데 발전원별로 상 당히 차별적인 과세가 이루어지고 있음
- 외부비용이 가장 적은 수력발전에 대해서는 10%의 부가가치세, 발전 용수 10m^3 당 2원의 지역자원시설세, 발전용수 100m^3 당 231원의 하천 수 사용료가 부과됨
- LNG화력발전에 대해서는 3%의 관세, 10%의 부가가치세, 60원/kg의

개별소비세, 0.3원/kWh의 지역자원시설세 및 24,242원/톤(약 0.44원/kWh)의 석유 및 석유대체연료의 수입판매부과금이 부과됨

- 원자력발전에 대해서는 10%의 부가가치세, 1.0원/kWh의 지역자원시설세 및 1기당 1,572백만원(약 0.38원/kWh)의 원자력관계사업자등의비용부담금, 1.2원/kWh의 원자력 연구개발사업비용부담금, 약 0.24원/kWh의 사용후핵연료관리부담금 등이 부과됨
- 반면 원자력 발전에 상응하는 외부비용을 발생시키는 석탄화력발전에 대해서는 10%의 부가가치세, 24원/kg의 개별소비세, 0.3원/kWh의 지역자원시설세만 부과함
- 이외에도 발전원의 차이에 관계없이 전기사업자에 대해 전기요금의 3.7%에 해당하는 전력산업기반기금부담금을 부과함
- 발전원에 대한 지역자원시설세 과세에 대하여 구체적으로 살펴보면, 발전원에 대한 지역자원시설세는 수력발전을 기점으로 순차적으로 도 입됨
- 수력발전에 대한 과세는 1991년 지방세법 개정 시 지역의 균형개발 및 수질개선과 수자원 보호 등에 소요되는 재원을 확보하기 위해 지역개발세라는 세목으로 신설되었으며, 1992년부터 과세하여 현재 발전용수 10m^3 당 2원을 과세하고 있음
- 원자력발전에 대한 과세는 2005년 지방세법 개정 시 원자력발전소가 설치된 지역 주민들의 경제적 손실 보전을 위하여 지역개발세의 과세대상에 추가되어 2006년부터 1kWh당 0.5원을 과세하였고, 2015년 부터는 1kWh당 1.0원을 과세하고 있음
- 화력발전에 대한 과세는 2011년 3월 지방세법 개정 시 화력발전소가 설치된 지역의 균형발전 재원을 마련하고자 과세대상에 추가되었으며, 3년간의 유예기간을 거쳐 2014년에 1kWh당 0.15원을 과세하였고, 2015년부터는 1kWh당 0.3원을 과세하고 있음

<표 7> 발전원별 세제 현황

			ই	.력	이기러	스러			
			유연탄	LNG	원자력	수력			
		관세	_	3%					
조	국세	개별소비세	24원/Kg ¹⁾	60원/Kg					
세		부가가치세	10%	10%	10%	10%			
	지방 세	지역자원시설세	0.3원/kWh	0.3원/kWh	1.0원/kWh	2원/10m³ (약 2.7원/kWh)²)			
	전력	산업기반기금부담금	전기사업자가 전기요금의 3.7% 부담						
부	석유	및 석유대체연료의		24,242원/톤					
담	4	수입판매부과금		(약 0.44원/kWh)					
금	원자력	역 연구개발사업비용			1.2원/kWh				
•		부담금							
사	원지	력관계사업자등의			1기당 1,572백만원				
용		비용부담금			(약 0.38원/kWh)				
豆	사용	후핵연료관리부담금			약 0.24원/kWh ³⁾				
		하천수 사용료				231원/100m³			

- 주: 1) 2017년 4월부터 30원/Kg으로 인상됨.
 - 2) 박병희(2015)은 2013년 기준으로 과세대상(100kWh 이상 시설용량) 수력발전총량(3,639,198MWh) 대비 발전용수에 대한 지역자원시설세 정수액(9,757백만원)을 기준으로 수력발전 1kWh 당 약 2.7원으로 추정함.
 - 3) 전의찬(2017)은 사용후 핵연료 다발당 관리부담금(경수로 320백만원, 중수로 13백만원)을 이용하여 원자력발전 1kWh당 0.24원으로 추정함.

자료: 국가법령정보센터(www.law.go.kr).

- 현재의 발전원에 대한 과세체계는 발전원별로 차등적인 과세를 하고 있으나 발전원별 에너지 효율과 제반 외부비용의 차이를 제대로 고려 하지 않음
- 화력발전 및 원자력발전의 외부비용이 수력발전에 비해 훨씬 높은데 도 불구하고 화력발전 및 원자력발전에 대한 지역자원시설세는 수력 발전에 비해 각각 1kWh당 11%(화력발전 0.3원/2.7원) 및 37%(원자력 1.0원/2.7원)에 수준에 불과함
- 가스복합화력발전은 에너지효율이 일반 화력발전보다 훨씬 높고, 설 치목적 및 허가법률 상 차이가 있지만 일반 화력발전과 동일한 수준 의 지역자원시설세가 과세되고 있음
- 열병합발전의 경우 에너지효율이 80%에 달하고 집단에너지의 경우 지역의 에너지를 공급하는 것이기 때문에 지역 내 자가소비를 위한

에너지를 생산함에도 불구하고 일반 화력발전과 동일한 수준의 지역 자원시설세를 과세하고 있음

- 2015년 기준 발전원에 대한 지역자원시설세는 2,607억원이며, 원자력에 대한 과세가 1,564억원으로 60.0%를 차지함
- 화력발전에 대한 지역자원시설세는 996억원으로 전체 대비 38.2%이 며 수력발전은 47억원으로 1.8%를 차지함
- 수력발전에 대한 과세는 2011년 102억원을 기점으로 감소하는 추세에 있으며, 특히 2014년부터 수력발전량이 크게 감소함에 따라 지역자원시설세도 절반 수준으로 감소함
- 원자력발전에 대한 과세는 2006년 과세이후 700억원 대를 유지하여 왔는데 2015년의 세율 인상에 따라 세액도 2배로 증감함
- 화력발전에 대한 과세는 2014년에는 458억원이었으나 세율인상에 따라 2015년에는 996억원으로 2.2배 증가함

<표 8> 발전원별 지역자원시설세 과세 현황

(단위: 백만원)

	수력		원지	사력	ই	.력
	백만m³	세액	GWh	세액	GWh	세액
2005	38,955	9,073	_	_	_	_
2006	36,146	8,749	125,451	62,726	_	_
2007	39,172	8,975	143,256	71,628	_	_
2008	35,423	8,231	147,706	73,853	_	_
2009	_1)	7,485	146,318	73,159	_	_
2010	40,480	9,257	152,295	76,148	_	_
2011	47,571	10,205	142,566	71,286	_	_
2012	37,826	8,579	150,858	75,429	_	_
2013	42,956	9,757	139,168	69,584	_	_
2014	25,538	5,786	154,694	77,354	309,921	45,861
2015	20,709	4,738	163,255	156,413	338,375	99,609

주: 1) 지방세정연감에 19,474,954백만m³로 집계되어 있으나 2008년 대비 550배에 달하여 오류로 보여짐. 자료: 행정자치부, 지방세정연감, 지방세통계연감, 각 년도.

Ⅳ. 과세불공정 시정을 위한 대응방안

1. 에너지세제 개편방향

- 외부효과 유형 및 외부비용을 고려하여 기존 에너지세제 조정 및 추가 세목 신설, 통합적인 관점에서의 에너지 가격 조정이 필요함(이종수, 2017)
- 현재의 에너지 가격체계는 적절한 에너지원 소비를 유도하는 가격신 호기능이 제대로 작동하지 않음
- 공급자에게 부담을 지우는 과세체계는 요금인상을 통해 최종적으로 소비자에게 전가되나, 소비자는 에너지 가격에 대한 세부정보를 제대 로 파악하지 못하기 때문에 효율적인 에너지 소비선택이 이루어지지 않음
- 소비자가 쉽게 이해할 수 있는 방향으로 에너지원의 외부비용을 소비 자가격에 반영하여 제공하여야 함
- 에너지원에 대한 과세를 포함한 소비자 가격이 효율적인 에너지 소비를 유도하는 가격신호를 보내기 위해서는 에너지원별 적절한 외부비용이 투명하게 반영되어야 함
- 소비자가 에너지원의 외부비용을 인식할 수 있도록 에너지원의 가격 정보가 제공되어야 함

2. 발전부문 과세형평성 제고 방안

- 발전원별 에너지효율성과 사회적 외부비용을 고려한 과세체계 확립이 필요함(유승훈, 2017)
- 환경피해가 심각함에도 불구하고 LNG에 비해 과세 수준이 낮은 석 탄에 대해서는 과세를 강화하여야 함
- 친환경 발전원인 LNG에 대해서는 가격경쟁력을 갖출 수 있도록 개

별소비세, 부담금 등을 조정하여 과세 수준을 하향 조정함

- 원자력발전 뿐만 아니라 사용후 핵연료, 방사성 폐기물 등의 저장에 따른 위험요인을 고려하여 원자력발전에 대한 과세를 강화하여야 함
- 발전소 소재 지역의 환경피해, 잠재적 위험성 등을 고려한 지역자원 시설세 과세의 형평성제고가 필요함
- 화력발전 및 원자력발전의 외부비용이 수력발전에 비해 훨씬 높은 점을 고려하여 화력발전 및 원자력발전에 대한 지역자원시설세를 최소한 수력발전 수준(1kWh당 2.7원; 박병희(2015))으로 조정할 필요가 있음
- 에너지효율이 일반 화력발전보다 훨씬 높고, 상대적으로 환경오염에 대한 외부비용이 낮은 가스복합화력발전에 대한 지역자원시설세는 현재의 수준(1kWh당 0.3원)을 유지하는 것이 바람직함
- 열병합발전의 경우 에너지효율이 80%에 달하고 집단에너지의 경우
 지역의 에너지를 공급하는 것이기 때문에 석탄 화력발전에 비해 낮
 은 수준의 지역자원시설세를 과세할 필요가 있음

3. 충남의 대응 방안

- 석탄화력발전에 대한 지역자원시설세 개편과 관련하여 중앙부처의 에 너지 정책 및 에너지세제 개편 동향 파악 필요
- 최근 에너지세제 관련 세미나에 제시된 관계 부처 입장을 살펴보면, 주관부서인 산업통상자원부는 상대적으로 세제 개편에 소극적임
- 기획재정부는 "외부비용을 반영하는 친환경 에너지세제 구축을 위해 에너지원간 세율체계를 점진적으로 조정하는 것이 중장기 조세정책 방향"이라는 입장을 취함
- 산업통상자원부는 "발전원별 조세부담이 1kwh당 원전 11.7원, 유연탄 9.85원, 중유 4.05원, LNG 8.37원이기 때문에 조세 형평성 측면에서

원전과 석탄화력발전에 대한 과세 강화는 신중한 검토가 필요하다" 는 입장을 취함

- 산업통상자원부의 2017년 업무보고에 나타난 에너지정책방향에서도 에너지세제 개편에 소극적임
- 원전 등 에너지 시설에 대한 안전수준의 강화
- · 원전부지 안전성 점검, 가동 원전 핵심시설 내진성능 보강, 대피요령 교육 체험시설 건립 등 추진
- · 전력·석유·가스 시설에 대한 내진기준 정비, 지진 발생 등에 대비한 에너지 수급 비상 공급 시스템 강화
- · 원전·가스저장소·발전소 등 에너지시설에 대한 해킹 대응체제 보강 및 정보보안 인력 과 예산 확대
- · 전통시장 등 노후 설비에 대한 안전관리 강화를 위한 지원확대
- 친환경적 에너지 수급기반 구축 및 제도 개선
- · 新기후체제, 유가변동 등에 대응한 친환경적 에너지 생산을 지속 확대하는 중장기 수 급안정대책마련
- · 산업·수송·공공 등 특화된 에너지 소비 효율화 강화
- · 자원개발 공기업의 구조조정을 통해 영업이익 흑자전화 등의 성과를 창출하기 위한 지원
- · 에너지시장 활성화를 위한 에너지원별 제도개선을 추진
- 에너지복지 확대 및 사각지대 최소화
- · 에너지 바우처와 전기요금 할인 등을 통하여 에너지복지 수급대상 및 지원수준의 지속확대
- · 저소득 가수 실태조사를 통해 지원대상의 추가 확대 검토

○ 정치권의 대응 방안

- 산업통상자원위원회를 중심으로 산업통상자원부와의 에너지세제 개 편방향에 대한 공감대 형성
- 미래지향적 에너지정책방향을 고려한 에너지 및 에너지 시설관련 과 세방안에 대한 의원법안 발의

- · 김대흠, 박남춘 의원안(2016.7.18. 발의); 석유류 리터당 1원, 천연가스 m³당 1원, 폐기물 매립 톤당 5.000원
- · 어기구, 정유섭 의원안(2016.8.26. 발의); 석탄화력발전 1kWh당 1~2원
- · 김영춘 의원안(2016.10.19. 발의); 핵연료세 신설, 핵연료 가액의 100분의 10
- · 박순자 의원안(2016.11.8. 발의); 조력발전 1kWh당 2원
- · 강석호 의원안(2016.11.30. 발의); 방사성 폐기물에 대한 과세
- 지방자치단체의 대응 방안
- 에너지원의 외부비용 및 에너지원 외부비용의 내부화 장치에 대한 연구 동향 파악
 - · 시장경제연구원(2013), "에너지 가격 구조 합리화를 위한 정책·제도 개선방안"; 기존 연구 등에서 추정된 사회적 비용을 반영하여 발전용 연료별 환경오염비용을 분석하였는데 LNG 95원/kg, 중유 574원/L, 유연탄 52원/kg으로 추정함
 - · 한국자원경제학회(2013), "수송용 유류세 개편 연구"; 발전용 연료의 외부비용을 환경비용, 사후처리/사고비용, 사회적 수용성 비용 등을 고려하여 산정하였는데 석탄화력 51.7원/kWh, LNG(복합) 6.3원/kWh, 원자력 36.5~72.6원/kWh으로 추정함
 - · 서울대학교(2016), "국가 감축목표 달성을 위한 발전부문 사회적 비용의 적정수준 및 바람직한 부담방안 도출"; 국내외 연구를 토대로 발전부문의 외부비용을 포괄적으로 정의하고 산정하였는데 석탄 29.1~49.0원/kWh, 석유 21.7~39.6원/kWh, LNG 13.9~25.0원/kWh으로 추정함
 - · 서울대학교(2017), "에너지원 간 과세 및 외부비용 비교 연구" 진행 중
- 미래지향적 에너지정책방향에 부합하는 지역의 논리 개발 및 전파
- · 국가(중앙)와 지역이 상생하는 에너지세제 개편방향 제시
- · 중앙정부 및 소비자를 설득할 수 있는 탄탄한 논리 개발 및 전파

V. 요약 및 결론

○ 우리나라는 에너지 생산 및 소비단계에서 발생하는 외부비용을 내부 화하기 위하여 다양한 조세와 부담금을 부과하고 있는데 전반적으로 수송부문에 대하여 높은 과세, 발전부문에 대하여 낮은 과세를 하고 있음

- 발전원에 대한 지역자원시설세 과세에 있어서 발전에 따른 외부비용을 제대로 반영하지 못함에 따라 불공정 시정 및 왜곡된 에너지세제 개편을 위해 석탄화력발전에 대한 과세 강화가 요구됨
- 본 연구는 발전부분에 대한 지역자원시설세 과세 불공정 시정을 위한 대안 마련을 위해 석탄화력발전의 외부성, 에너지 세제 및 발전부분 과세 현황과 문제점, 과세불공정 시정을 위한 대응방안 등을 검토함
- 발전원에 대한 지역자원시설세 과세의 형평성 제고를 위해 다음과 같 은 개편이 필요함
- 화력발전 및 원자력발전의 외부비용이 수력발전에 비해 훨씬 높은 점을 고려하여 화력발전 및 원자력발전에 대한 지역자원시설세를 최소한 수력발전 수준인 1kWh당 2.7원으로 조정할 필요가 있음
- 에너지효율이 일반 화력발전보다 훨씬 높고, 상대적으로 환경오염에 대한 외부비용이 낮은 가스복합화력발전에 대한 지역자원시설세는 현재의 수준(1kWh당 0.3원)을 유지하는 것이 바람직함
- 열병합발전의 경우 에너지효율이 80%에 달하고 집단에너지의 경우 지역의 에너지를 공급하는 것이기 때문에 석탄 화력발전에 비해 낮 은 수준의 지역자원시설세를 과세할 필요가 있음

참고문헌

- 김경호 외, "지방자치단체의 자주재원 확충을 위한 화력발전에 대한 지역개발세 과세 방안 연구: 화력발전과세를 중심으로", 「한국지방자치연구」, 제10권 제2호, 2008, pp.201-220.
- 박병희, 「발전분 지역자원시설세 과세 합리화 방안」, 한국지방세연구원, 2015.
- 석광훈, "석탄화력이 지역에 미치는 영향과 개선방향", 「화력발전 청정화 및 CO₂ 저감을 위한 정책토론회」, 2016.
- 송상훈류민정, 「지역자원시설세의 발전적 과세 방안」, 경기개발연구원, 2011.
- 유승훈, "환경과 안전을 고려한 에너지세제 개선 방향", 「깨끗한 대한민국을 위한 에너지세제 개선 방향 토론회」, 2017.
- 이종수, "에너지시장의 외부성과 에너지기본계획", 「밝은 내일을 위한 에너지 정책 방향 토론회」, 2017.
- 전의찬, "기후변화 대응과 미세먼지 오염개선을 위한 환경·에너지 정책 및 제언", 「밝은 내일을 위한 에너지 정책 방향 토론회」, 2017.
- 정성호·배득종·정창훈, "사회적 한계비용을 고려한 화력발전과세 확대에 관한 연구", 「지방행정연구」, 제25권 제4호, 2011, 한국지방행정연구원, pp.259~284.
- 정종필, 「지역특정자원에 대한 선택적 지방세 과세방안 연구」, 한국지방세연구원, 2014.
- 정종필, 「신세원 발굴을 통한 지방세 확충방안」, 한국지방세연구원, 2015.
- 정종필, "대산석유화학단지에 대한 지방세 과세 강화 및 주변지역 지원방안", 「석유화학단지 주변 지역 지원 법률 제정 등을 위한 정책토론회 자료집」, 충청투데이, 2015.
- 정종필, "석유화학시설 주변지역 지원확대를 위한 정책제언", 「석유화학시설 주변지역 지원확대를 위한 정책세미나」, 2016.
- 조영탁, 「전력산업기반기금 주요사업의 재정지원 적정성과 기금운용방식의 타당성 분석」, 국회예산정책처, 2010.
- 최병호·이근재, 「사용후핵연료 저장에 대한 지방세 과세가능성 연구」, 한국지방세연 구원, 2013.

국세청, 「국세통계연보」, 각 연도. 행정자치부, 「지방세통계연감」, 각 연도. 한국전력공사, 「전력통계속보」, 2016.12.