국외 공무여행 결과 보고서 - 중국 계림 -

2017. 12.

기획조정연구부 권영현 연구실장 지역도시연구부 임준홍 연구위원 김원철 책임연구원

1. 공무여행 개요
2. 공무여행 목적
3. 주요 세부일정
4. 공무여행 국가 개요
5. 발표 자료
(참고 1) 충남연구원 - 계림전자기술대학교 교류협약서(MOU) … 12
(참고 2) MOU 및 계림전자기술대학교 방문 사진

목 차

1. 공무여행 개요

- 출장기간 : 2017년 12월 10일(일) 13일(수), 3박4일
- 출장지역 : 중국 계림(Guilin)시 계림전자기술대학
- 출 장 자 : 권영현 연구실장, 임준홍 연구위원, 김원철 책임연구원

2. 공무여행 목적

- 중국 계림전자기술대학(Guilin University of Electronic Technology)과 공 동연구, 인력교류, 등 연구 활성화를 위한과 양해각서(Memorandum of Unferstanding : MOU) 체결 (본원 지역도시연구부 및 중국 계림전자기 술대학 건축교통공학과)
- 이 계림전자기술대학에서 개최한 국제세미나에서 충남 지역도시정책 방향
 및 교통연구 주제 발표 요청

3. 주요 세부일정

Date	Time	Schedule
	07:00~10:00	공주 ⇒ 인천국제공항
10(일)	12:00~19:00	인천국제공항 ⇒ 상하이푸동공항 ⇒ 구이린국제공항 (중국남방항공, 상 하이항공)
	20:00~	호텔
	10:00~12:00	MOU 및 세미나 발표 준비 등
11(월)	14:00~17:00	MOU 체결
	19:00~	호텔
12(호ŀ)	10:00~17:00	세미나 참석 및 주제 발표 - 발표1 : The Impact of Development of Naepo New Town on Neighboring Cities (임준홍) - 발표2 : Influence of In-Vehicle Real-Time Traffic Safety Warning Information on Driving Stability at Limited Signal Visibility Approach (김원철)
	19:00~	호텔
40(4)	08:40~16:00	구이린국제공항 ⇒ 상하이푸동공항 ⇒ 인천공항 (중국남방항공, 아시아나)
13(수)	17:00~20:00	인천국제공항 ⇒ 공주

4. 공무여행 국가 개요

- 계림시(구이린)는 중국의 남쪽에 위치하며 계림을 기준으로 서쪽으로
 류저우, 남쪽으로 라이빈, 우저우, 동쪽으로 허저우와 후난 성 융저우,
 북쪽으로 후난 성 사오양과 접하고 베트남과 국경을 이루고 있음.
- 이곳에 거주하고 있는 주민은 약 495만명 정도인데 장족(약 85% 차 지), 한족, 묘족, 모한족 등 다양한 민족으로 형성되어 있고, 명·청때 광 서성으로 불리다가 1958년에 자치구로 성립되었음
- 이 해저에서 지각변동으로 육지가 된 카르스트 지형으로 '꾸이린산수갑천 하'라는 명성으로 중국 10대 관광명승지 국제 관광도시, 국가지정 문화 재 및 유적지가 109개소에 이르며 꾸이린산수를 찬미 한 시, 불교, 조 각상들이 많이 산재하고 있는 역사, 문화의 도시로 시내교통이 매우 편리하며 관광객들을 위해 다른 도시에서 쉽게 볼 수 없는 무료셔틀버 스를 운행하고 있음

5. 발표 자료

(1) The Impact of Development of Naepo New Town on Neighboring Cities

- 4 -

(2) Influence of In-Vehicle Real-Time Traffic Safety Warning Information on Driving Stability at Limited Signal Visibility Approach

Variables	Definition	mean	S.D17
Traffic operation facto	מ		
Speed difference	Absolute value of the difference between current speed and past speed [km/h]	0.169	0.251
Gap distance	Distance from the rear end of preceded vehicle to the front end of the probe vehicle divided by 1000 [m]	0.104	0.034
Geometry factors			
Signal visibility	Ability of drivers to see the traffic signal indication [0 = visibility (190m from the stop line); 1 = limited]	0.351	0.477
Vertical grades	Absolute value of vertical grades divided by 10 [%]	0.285	0.199
Environment factors			
Road surface	The condition of road surface when driving was performed on the subject road $[0 = dry; 1 = wet]$	0.432	0.495
Time slot	The time of day implementing the driving experiment during a day $[0 = \text{morning}; 1 = \text{afternoon}]$	0.491	0.500
Day slot	The day of recording the scene either weekday or weekend [0 = weekday; 1 = weekend (holiday)]	0.589	0.492
Driver factors			
Trial number	The number of driving trials on the subject road during a day divided by 10 [integer, positive sign]	0.300	0.135
Driving experience	The real driving experience of each driver divided by 10 [integer, positive sign]	0.196	0.108
Provision of in-vehicle	RTSWI		
Provision of the In-vehicle RTSWI	Provision of the in-vehicle RTSWI [0 = without; 1 = provision]	0.659	0.474
Utility of RTSWI	A value of in-vehicle RTSWI is assumed to follow the normal density function multiplied by [0 = without provision; 1=provision]	-	-

Driving Stability Risk Model Incorporating Short-Term Memory

Elasticity

- Elasticity → All estimates (absolute value) are significantly less than one 1% change in continuous variable will lead to small change in the driving stability risk → 1% increase in the gap distance between cars (or utility of in-vehicle RTSWI) will give a larger increase in the probability of low than that of vertical grade

■ Gap distance → Needs to see car-following aspect

Continuous variables	Drivi		
Continuous variables	low	medium	high
1% increase in speed difference	-0.080	0.005	0.088
1% increase in gap distance	0.766	-0.048	-0.848
1% increase in vertical grades	0.468	-0.030	-0.517
1% increase in trial number	-0.888	0.056	0.982
1% increase in driving experience	-0.365	0.023	0.404
1% increase in utility RTSWI	0.470	-0.030	-0.519

Conclusions

- Use of Ordered Response Probit (ORP) model
 - \rightarrow It is an appropriate evaluation model for traffic safety using driving speeds in case of no traffic accident data
 - → Our proposal can be used for assessment of the effectiveness of ITS applications in terms of traffic safety analysis

- is not long
- > Elaborate analysis is possible compared to the existing method, which can produce more

Variables	Existing	method	Proposed method	
variables	Estimate	t-statistic	Estimate	t-statistic
Constant	0.913	10.982†	0.838	10.018†
Speed difference	0.400	4.381†	0.410	4.475†
Gap distance	-7.443	-14.514†	-6.384	-11.928†
Signal visibility	0.323	8.305†	0.412	10.808†
Vertical grades	-1.173	-13.176†	-1.424	-15.517†
Road surface (wet)	-1.110	-26.888†	-1.050	-24.769†
Time slot	0.250	4.846†	0.203	3.911†
Day slot	-	-	-	
Trial number	1.902	9.596†	2.570	14.649†
Driving experience	1.328	8.005†	1.613	9.773†
Provision of in-vehicle RTSWI	0.096	2.004*	-10.626	- 10.699 †
v ² (for short-term memory)		-	39.092	8.349†
(for driving stability risk model)	1.167	51.568†	1.196	51.423†
Observations	4836		4836	
Log-likelihood (LL) with zero coefficients	-5924.732		-5971.105	
Log-likelihood (LL) for estimated model	-4533.361		-4456.993	
Adjusted R-squared	0.233		0.252	
Aakaike's Information Criterion (AIC)	1.879		1.848	

Driving Stability Risk Model Incorporating Short-Term Memory

- Probabilities of driving stability risk
 Sensitivity analysis was performed by controlling the utility of the in-vehicle RTSWI, while taking a value of zero for all discontinuous variables and average values for other continuous variables
 Low, medium, and high driving stability risk are 0.403, 0.426, and 0.171 when the in-vehicle RTSWI is provided. *These probabilities are changing until nearly 22 sec, and 0.328*, each or 10.78, 0.430, and 0.327 expectively.
- , showing 0.178, 0.430, and 0.392 respectively

(참고 1) 충남연구원 - 계림전자기술대학교 교류협약서(MOU)

한국 충남연구원 - 중국 계림전자기술대학교

연구교류 및 협력 협약서

한국 충남연구원과 중국 계림전자기술대학교는 호혜평등의 원칙에 의거하여 지속적인 협력을 추진하기 위해 다음과 같은 협력사항을 추진하기로 협약한다.

제1조 (목적) 양 기관은 지역 및 도시 개발, 농업 농촌 등 다양한 분야에서 상호 발전을 위한 지속적인 교류에 힘쓴다.

제2조 (협력분야)

- 1. 지역 교통 및 물류 등 지역개발, 농업 농촌 발전 등 다양한 분야에 대한 인적 교류
- 2. 공통관심사를 주제로 한 국제 학술세미나 공동 개최
- 학술자료 및 정보 공유와 공동 조사연구
 기타 상호 교류 협력이 필요하다고 인정되는 사항

제3조 (사업경비) 이 협약의 이행에 필요한 인력과 자금투입은 각 기관이 스 스로 부담함을 원칙으로 한다. 다만 필요시 협의에 의해 결정할 수 있다.

제4조 (협약 효력 및 기간) 본 협약 효력은 서명한 날로부터 발생한다. 협약 의 유효기간은 체결일로부터 2년으로 하되, 별도의 서면 통보가 없는 한 매 년 1년씩 자동 연장되는 것으로 한다.

제5조 (기타) 양 기관은 이 협약내용의 준수와 성실한 이행을 위해 서명하고 각 1부씩 보관한다.

2017년12월11일

한국 충남연구원

중국 계림전자기술대학교

국제교류학과

원장:

과장:

(참고 2) MOU 및 계림전자기술대학교 방문 사진

