중부권 미세먼지 관리를 위한 연구 교류 세미나

추진배경

- O 나날이 증가하는 미세먼지에 대한 국민적 관심과 우려로 국가차원의 대기
 환경개선정책이 추진되고 있으며, 미세먼지법과 대기관리권역법이 수립됨
- O 관련 법에 따라 각 권역별로 미세먼지연구관리 센터가 지정되어 운영되고 있으며, 중부권에는 공주대 주관으로 지역 내 현안문제 해결을 위한 연구가 추진되고 있음
- · 충청남도는 지역적 한계로 인적·물적 인프라가 부족하여 유관기관간 업무협 력이 요구되며, 각 기관별 교류를 통한 인적 네트워크 향상과 공동 연구방 안 논의를 통해 기관의 연구역량 강화를 기대할 수 있음

▮ 추진목적

아유관기관간 인적 네트워크 구축
아각 기관별 업무추진 현황 공유
아공동연구방안 모색

🎹 기대효과

O 도 내 전문인력의 연구역량 강화

○ 최신 연구동향 파악을 통한 지역 연구에 반영

○ 공동 연구를 통한 충청남도 대기환경관련 유관 기관의 역량 강화

₩ 행사개요

- O 중부권 미세먼지 관리를 위한 연구교류 세미나
- O 일 시 : 2023년 5월 11일(목) 10:00~12:00
- O 참 석 : 충남연구원, 중부권 미세먼지 연구·관리 센터
- O 장 소 : 충남연구원 서해안기후환경연구소
- 참석인원 : 김종범 책임연구원 외 9명

♥ 세부일정

시 간	내 용								
5월 10일 (수)									
10.00~10.02	하여사	이상신 연구위원							
10.00 10.03		(충남연구원)							
10.02~10.12	차서가 소개	김종범 책임연구원							
10.05 10.15		(충남연구원)							
10.12~10.32	대기환경연구소 자료를 활용한 지역별 PM _{2.5} 의	김종범 책임연구원							
10.15.10.55	물리화학적 특징	(충남연구원)							
10:35~10:55	마으대기츠저마 우여 민 데이터 과리 혀화	송한결 연구원							
		(충남연구원)							
10.22~11.12	주브귐 ㄱ노ㄷ DMaz이 기사/기호 여햐 브서	상정 연구교수							
10.55 11.15	8 - 전 포 8 포 1 1012 5 - 기 87 시 - 8 8 전 -	(중부권 미세먼지연구관리센터)							
11.12~11.35	WRF-Chem 모형을 이용한 동아시아	이재형 연구원							
11.15.11.55	기상-대기질 예측체계 개발	(중부권 미세먼지연구관리센터)							
11:35~11:55	조하돈이	김종범 책임연구원							
	○ 日工一	(충남연구원)							
11:55~12:00	마무리								

【별첨 1】

참석자 명단 (10명)

	소속	직 위	이 름			
1		연구위원	이상신			
2		책임연구원	김종범			
3	충남연구원	충남연구원 책임연구원				
4	(6)	연구원	이상기			
5		연구원	황규철			
6		연구원	송한결			
7		연구교수	상정			
8	중부권 미세먼지연구·관리센터	연구원	이재형			
9	(4)	연구원	현지민			
10		사무원	박시원			

중부권 미세먼지 관리를 위한 연구 교류 세미나 / 서해안기후환경연구소 1층

대기환경연구소 자료를 활용한 지역별 PM_{2.5}의 물리화학적 특징

2023. 5. 11

김종범, 황규철, 송한결

충남연구원 서해안기후환경연구소

CONTENTS

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

1. 서해안기후환경연구소 소개 2. 대기환경 이슈 3. 지역별 초미세먼지 특성 분석

충남연구원(ChungNam Institute)

충남연구원은 <mark>충남</mark>을 연구합니다

미션

✓ 도민이 행복한 지역발전을 위한 정책개발 · 활용

목표

- ✓ 미래정책 선도발굴
 ✓ 도민참여 연구 추진
 ✓ 이슈과제 지원 확대
- ✓ 통합조직 역량 강화

구성

- ✓ 5실 1단으로 구성
- ✓ 약160여명근무
- ✓ 전국 3위 규모의 지역정책 연구기관(1위 서울, 2위 경기)

ن با با با 충남연구원

※ CY °C

y and the second second

충남연구원(ChungNam Institute)

충남재난안전연구센터

- 재난 안전사고의 체계적 분석과 연구 안전문화 정책과 의식제고를 위한
- 안전기반사업 강화

- 도내 재난안전 DB구축과 빅데이터 분석

츳남마음만 돌기지 위세터

• 마을만들기 시책개발 및 조사, 분석 연구 · 상담지원, 의견제출, 교육 등 · 홍보및 민간조직 구축운영

충남어초특화지원세터

- · 어촌6차산업용복한 지원조사 및 충납형 어촌 특화 네트워크 구축 도내 어촌마을 대상 연구개발, 창업 및
- 경영 컨설팅
- · 특화상품 판로 확보

충남도시재생지원센터

- · 충청남도 도시재생지원센터 설치 및 유영
- 도시재생대학 운영
- 도시자생 뉴딜사업 모니터링 및 정책 방향 제안

총남공공투자관리센터

• 도내 재정사업의 발굴 및 지원 · 투자사업 재무성 및 경제성 검토, 검증을 통한 합리적 사업 추진 도모 · 지방재정투자 타당성 조사 및 예비 타당성 조사 재조사 연구지원

서해안기후환경연구소

설립목적 (2015. 3 개소)

- 충청남도 산하 지방출연기관인 충남연구원 부설 연구소
- 충청남도와 서해안 연안의 기후변화 대응 기반을 조성
- 환경보전을 통한 지속가능한 발전 도모

주요연구분야

- 기후변화 정책지원
- 에너지·온실가스 관리
- 기후변화적응대책 수립
- 연안환경관리
- 기후변화 모니터링
- 녹색경영지원

〈석유화학단지 주변지역 오염도 조사〉

〈선박배출량조사〉

〈기후변화 영향조사〉

〈대형배출시설 주변지역 대기질 모니터링〉

서해안기후환경연구소

1. 서해안기후환경연구소 소개

국가 미세먼지 관리 종합계획 수립

□ 정부차원의 국가 미세먼지 관리 종합계획 발표 (2019.11) □ 국가 정책을 기반으로 하는 지역 맞춤형 분야별·단계별 목표 및 계획 수립 필요

산업부문	·미세먼지 다량배출지역을 대기관리권역으로 엄격관리 ·사업장오염물질배출기준강화및관리체계재정비 ·사업장배출관리실태감시및단속강화 ·사업장환경관리강화를위한지원확대	제3차 미세먼지특별대책위원회 안건① 심의	비전목표	망고 깨끗한 문 '16년 대비 초미	
	·노후경유차퇴출가속화			※ 선국 소미세인시(PM2	2.5) 연평균 공도 : '16면 26µg/m' → '24면 16µg/m'
	·경유차검사·관리강화			분 야	15대 중점 추진과제
노도수송부분	·신규경유차수요억제/저공해차보급확대 ·대중교통편의증진및교통수요관리강화	미세먼지 관리 종합계획		· 산업부문	① 배출총량제 전국 확대 ② 사업장 점검 및 단속 강화
		(2020~2024)		. 스소브무	③ 노후경유차 감축 강화 및 저공해차 보급 확대 ④ 서반 및 아마 과리기존 강향
	·선박배출미세먼지저감		국내	TOTE	⑤ 노후건설기계 관리 강화
비도로수송부문	·항만미세먼지감축 ·건설농기계관리강화 ·공항미세먼지 저감추진		개를 감축	· 발전부문	 ⑥ 석탄발전 미세먼지 저감 ⑦ 친환경에너지 전환(중장기)
	·석탄화력미세먼지저감추진	2019. 11. 1		· 농업 · 생활부문	⑧ 축산 환경 관리 강화 ⑨ 저녹스 보일러 보급 확대
발전및 농업생활부문	·친환경에너지전환및사각지대관리강화 ·농업·농촌분야미세먼지저감		국민 건강	· 국민건강 보호	 미세먼지 고농도 계절관리제 도입 실내공기질 관리 강화
	·도심미세먼지저감		국제 협력	· 동아시아 대기협력	 ⑦ 동아시아 미세먼지 저감 협약 추진(중장기) ⑨ 실체적 협력사업 확대
국민건강보호	·고농도초미세먼지재난대응체계구축 ·미세먼지고농도시기계절관리제 ·민감·취약계층건강보호기반강화 ·미간·최약계층거강보ㅎ혀자이해정건강하	· 관계부처 합동	기반 · 소통	· 과학적 접근 · 실천 · 국민참여 · 소통	 ⑨ 미세먼지 해결 다부처 기술개발 사업 ⑨ 참여와 숙의를 통한 사회적 합의 도출

【 국가정책에 따른 지역 맞춤형 관리대책 추진 → <mark>정밀진단을 통한 원인파악과 결과분석 필요</mark>

□ 미세먼지 특별법 시행과 권역별 대기환경관리 기본계획에 따라 국가 및 권역별 대기환경개선 목표 수립(대기환경 개선시행계획)
 □ 지역별 PM_{2.5} 개선대책 수립을 위한 원인분석과 추진경과 분석을 위한 지역별 정밀측정 자료 확보 필요

□ 대기관리권역 설정

- 2005년부터 지정된 수도권 외에 중부권, 동부권, 남부권을 권역으로 추가 총 77개 특광역시 및 시 군을 권으로 관리
- 🗆 권역별 맞춤형 대기환경관리 추진
 - 지역 특성을 고려한 광역적이고 체계적 관리 실시
- 환경부, 관계 중앙행정기관의 장 및 권역에 포함된
 시도지사와 협의를 거쳐 권역별 대기환경개선 목표,
 시도별 배출허용총량, 배출원별 저감계획 등이
 포함된 권역별 〈대기환경관리 기본계획〉을
 5년 마다 수립
- □ 사업장 대기오염물질 총량관리제 확대 시행
- 권역 내 위치한 690여개 오염물질 다량 배출사업 장에 대한 총량규제 실시
- 2024년까지 2018년 대비 약 40% 감축목표
- □ 자동차 및 건설기계의 배출가스 억제
- 🗆 생활주변 소규모 배출원 및 기타 배출원 관리

개선대책 수립의 근거자료 확보 및 정책 추진에 따 른 결과 해석을 위해 지역별 정밀분석 필요

충청남도의 지역·환경적 여건 : 편서풍 지대에 위치하여 중국의 영향, 쉴 틈 없는 오염벨트 지역

□ 지리적 여건 : 중국발 미세먼지는 대륙고기압 중심이 남쪽으로 이동하거나 북서풍이 강할 때 국내 유입됨
 □ 환경적 여건 : 석탄화력발전소(당진, 보령, 태안, 서천), 대산 석유화학단지, 현대제철소 등 다수의 대형배출시설 위치

복합적인 환경문제 발생 💙 주민 건강 보호와 대기환경 개선을 위한 대기 관리 대책 마련이 시급

Ö	 대한민국 인구의 47.8% 거주 (서울, 경기, 충남)
\$ 3	 대기오염물질 배출량의 1/3 (2019년 기준) 배출 경기 16.5%(1위), 충남 11.0%(3위), 서울 5.6%(8위)
	 충남지역 석탄화력발전소 전국 59기 중 29기 위치 전국 3대 제철소(당진), 전국 3대 석유화학단지(서산)
60	 편서풍지대 위치: 북서풍 및 서풍계열이 주풍 장거리이동오염물질에 직접 영향권(정서쪽 위치)
A Dec	 상이한 배출특성 지역(도심, 산업, 교외지역) 상이한 지역적 특성분석을 통한 연구결과 확산 용이

수도권과 충청권 데이터 확보 필요성

목표 4 : 충청권(교외지역) 지역오염 특성 조사

○ PMF를 이용한 지역별 기여도 분석
 ○ 기여도분석결과와 지역 배출량과의 상관성 분석

○ 2차생성 PM₂₅에 대한연구동향조사

목표 3 : 고농도 미세먼지 발생에 따른 지역별 PM_{2.5} 특성 분석

지역별 고농도 미세먼지(황사, 국내발생 등) 현황 조사
 고농도 미세먼지 발생시 지역적 PM_{2.5}의 물리화학적 조성 변화 특성 분석
 고농도 미세먼지 발생구간에 대한 역궤적 분석 (국내외 영향 분석)
 국내외 발생 기원에 따른 조성 변화 분석

목표 2 : 고농도 미세먼지 사례 분석

○ 지역별 미세먼지 관련 선행 연구사례 조사

○ 지역별 측정소 데이터 기초통계 분석

○ 지역별 기상기후 자료 분석

○ 중기적 지역(수도권, 경기권, 충청권)의 연간 PM_{2.5}의 물리화학적 특성 비교 분석 (2021년 대상, 필요시 2022년도 자료 포함)

목표 1 : 중장기적인 지역의 PM_{2.5} 조성 분석

연국개발 목표 및 내용

지역별 PM_{2.5} 특성

□ 경기권 측정소 데이터가 26.4 µg/㎡으로 가장 높음 (충청권 23.4 µg/㎡, 수도권 21.8 µg/㎡) □ 월별로는 3월과 11월에 가장 높았으며, 가장 낮은 달은 9월/ 전국이 동일 □ 성분별로 질산염(NO₃⁻)이 가장 높은 분율을 보였고, 그 다음 황산염(SO₄²⁻), 유기탄소(OC), 암모늄 이온(NH₄⁺) 순으로 확인됨

충

<u>نَّة</u> حَكَّ (

·남연구원

지역별 PM_{2.5} 특성

□ 미세먼지 계절관리제가 이루어지는 <mark>겨울철(1~2, 11~12월)에 농도가 높고</mark>, 편차가 가장 크게 나타남 □ 계절별 최대/최소농도 차이 : 경기권 4.1배, 수도권 4.0배, <u>충청권 : 5.7배</u>

지역별 PM_{2.5} 특성

□ <mark>전국이 유사</mark>하게 <mark>황산염+질산염약 40%</mark>를 차지, 여름철 황산염 급격히 증가한 만큼 질산염이 급격히 감소 □ OC비율 충청권 가장 높음 / 암모늄 이온 경기권 가장 높음 / EC는 전체적으로 2~3% 차지

고농도사례및지역별PM_{2.5}물리화학적특성분석

□ 국내 고농도 PM_{2.5} 발생시 해외유입과 국내 자체발생으로 구분되며, 지역 자체배출원에 대한 부분이 반영됨 □ 수도권은 도로와 유기용제 사용, 경기권은 유기용제 사용, 도로, 산업배출, 제조업, 충청권은 산업배출의 기여도가 크게 나타남 □ 국외/국외/지역특성을 고려한 자료 해석 및 대책 수립이 요구됨

19/36

남연구원

ॐ <ଫ °C

□ 수도권(도심지역, 605㎢), 경기권(산업단지지역, 10,196㎢), 충청권(교외지역, 8,246㎢) 으로 분류 □ 주요 배출원 : 수도권, 도로이동오염원 / 경기권 : 산업단지 / 충청권 : 주변 농업지역

Seoul Atmospheric environment Research center (SAR)

نَّ کَ کَ

- Location: Eunpyeong-gu, Seoul (37°36'37" N, 126°56'1" E)
- Urban area (population: 9,509,458)
- Major emission source: Transportation, Commercial, Residential

Gyeonggi Atmospheric environment Research center (GAR)

- Location: Ansan-si, Gyeonggi-do (37°19'12" N, 126°49'42" E)
- Industrial area (population: 652,726)
- Major emission source: Industry, Power plant

Chungcheong Atmospheric environment Research center (CAR)

- Location: Seosan-si, Chungcheongnam-do (36°46'36" N, 126°29'38" E)
- Suburban area (population: 176,645)
- Major emission source: Agriculture, Livestock

고농도사례및지역별PM2.5물리화학적특성분석

□ <mark>경기권 측정소</mark> 데이터가 26.4 µg/㎡으로 <mark>가장 높음</mark> (충청권 23.4 µg/㎡, 수도권 21.8 µg/㎡) □ 성분별로 <mark>질산염(NO₃⁻)이 가장 높은 분율</mark>을 보였고, 그 다음 황산염(SO₄²⁻), 유기탄소(OC), 암모늄 이온(NH₄⁺) 순으로 확인됨 □ 고농도 사례 분석 : <mark>일평균 농도로 75 µg/㎡ 이상인 구간</mark> / 4개 이벤트 선정

충남연구

نَّ کَ کَ

▪ 광화학스모그에 따른 SOA 생성 특성 분석

VOC (ton/yr)

□ CAPSS : 경기도 배출량 전국 1위, 안산시 VOCs 배출량 지역 내 2워(1위와 유사) / 반월 및 시화 국가산업단지 위치 □ 풍량이 적고, 북서풍 주풍, 정온상태 35.0~45.9% → 산업단지 영향 크고, 배출된 오염물질의 희석, 확산력 약함

자료: 블로그(안산 둘러보기) 22/36

남연구원

نة **ت** °(

광화학스모그에 따른 SOA 생성 특성 분석

□ 관측 일시 : 2022년 9월 23일 ~ 10월 11일 / 측정장비 : PTR-ToF-MS, O3, NO-NOx, SMPS □ 측정결과 : Nox의 감소와 함께 O₃ 및 나노입자 증가 추이 파악 (세부분석을 통한 논문화 작업 중) □ O₃ 상관성 분석 결과 : 기온, 습도, 아세톤, 자일렌 과의 상관성이 높게 나타남 / NOx 계열 물질과 음의 상관관계 확인

〈 O₃과 물질간 상관성 분석 결과 〉

് ന ്C

물질명	R	물질명	R	물질명	R	
기온	0.746	AAC	-0.058	XYL	0.700	
습도	-0.647	DMS	0.428	СВ	-0.039	
NO	-0.403	ISP	0.538	TMB	-0.425	
NO ₂	-0.187	MVK	0.456	PN	0.16	
Nox	-0.418	MEK	0.016	AVOC	0.502	
MOH	0.391	PA	0.509	OVOC	-0.45	
AN	0.302	ΒZ	0.257	TVOC	0.435	
AA	0.464	TOL	-0.149			
ACT	0.591	STR	-0.009			

충남연구원

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

□ 목표 : 국가차원의 전략적인 초미세먼지 등을 위한 현상규명 및 중장기 전망 기반을 구축하여 지역 맞춤형 시범실증

□ 사업기간 : 20년 6월 ~ 25년 3월 / 사업비 470,4억원

대기질 개선 및 초미세먼지 개선을 위한 국가차원의 대형 사업단

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 중사 📕 🗲 중남연구원

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

1-5사업의구성도

2. 지자체 특성에 맞는 미세먼지 저감대책에 과학적 근거 제공

3. 대기측정망 데이터 활용성 증대를 통한 지자체 중심의 PM_{2.5} 현황분석 및 대응 역량 제고

충남연구원

남연구원

최종: 중부권 시범지역의 초미세먼지 및 전구물질의 지역적 특성 규명

실시간 측정 기반의 중부권 해안과 내륙지역의 초미세먼지 및 전구물질의 지역적 특성 규명

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 중사 《 중남연구원

국내외 유입사례 분석

- ▶ 종관기상, 역궤적 분석
 - 자체영향 및 권역간 이동 사례 선정

충청권 대기오염측정망

- PM_{2.5}와 오염물질 시공간 분포
- 핫스팟 구분 및 이동사례 선정

< 국내·외 영향 구분의 예(Seo et al., 2020) >

- ➢ PM_{2.5} 성분측정망
 - PM_{2.5}성분 지점별 특성 파악
- ▶ 대기환경연구소 및 집중측정
 - 배출특성 : 서산, 당진
 - 주변지역 이동 : 서산·당진 → 천안·청주·세종

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 중산

연차별 추진 일정

1차년도													
츠지내요	추진 일정								책임자				
수선대중	1	2	3	4	5	6	7	8	9	10	11	12	(소속기관)
중부권 대기측정망과 화력발전소 마을대기 측정망 데이터 연계 오염특징 분석(2021~2022)													김종범(충남연)
대기측정망-서산 대기환경연구소 측정데이터 통합 분석(2021~2022)													김경환/서지훈 (KIST)
측정지점 선정 추가 조사/협의													김경환/김준태(KIST) 김종범(충남연)
실시간 질량분석 측정 기반 집중관측 플랫폼 구축													김경환(KIST)
세종지역 도로오염지도 작성을 위한 최적루트 설계													김경환(KIST)
Mobile lab 이동측정과 ACSM 고정측정 연계 활용으로 세종지역 도심특성 측정													김경환(KIST) 김종범(충남연)
기존 ACSM, PTR-MS 측정 결과 기반 PMF 해석방법 연구													김경환(KIST)
당진, 아산 필터측정													김종범(충남연)
			1		2차년!	토							
겨울(1~2월), 봄(4~6월), 여름(7~8월), 가을(10~11월) 필터 샘플링 수행													김종범(충남연)
ACSM, PTR-MS 등 측정 결과 데이터 분석													김경환(KIST)
초미세먼지 전구물질(VOCs와 암모니아)의 지역적 특성 측정													김경환(KIST)
이동/고정 실시간 측정 기반 산업단지 주변지역 오염영향 특성 측정													김경환(KIST) 김종범(충남연)
일차배출 파악 및 이차생성 파악													김경환/서지훈 (KIST)
데이터 상세분석 및 PMF 수행													김경환/김준태 (KIST)
·····································													
실시간 자료 연계 종합해석방안													김경환/서지훈 (KIST)
데이터 상세분석 및 PMF 수행													김경환/김준태 (KIST)
중부권 도심과 산업지역의 초미세먼지(PM ₂₅) 및 전구물질의 지역적 특성 통합분석													김경환/김준태/서지훈 (KIST)
중부권 도심, 산업지역 결과 기반 정책적 시사점 도출													김종범(충남연)

30/36

충남연구원

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조

중남연구원
ChungNam Institute

충남연구원의 역할

- 중남서북부 미세먼지 대응 행정협의회 : 측정장소 선정 및 협조, 연구결과 및 데이터 활용
- ➢ 중부권 미세먼지연구·관리센터: 데이터 활용을 통한 지역 정책 개발, 공동연구 및 업무협력 협조
- >> 충남보건환경연구원: 집중측정, 필터샘플링 등을 위한 장소 협조 / 데이터 공동 활용
- **>> 충청권대기환경연구소**: 실시간 데이터 자료 공유 협조 / 데이터 공동 활용
- >>> 충남연구원: 위탁과제 기관으로 측정자료 확보/분석, 집중측정 공동 수행 및 지역 정책발굴/제안

중부권 초미세먼지의 물리화학적 특성 및 지역 발생원 조사

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조

중부권 초미세먼지의 물리화학적 특성 및 지역 발생원 조사

- 충남지역 연구 네트워크 운영
 : 충남도 및 시군 충남보건연 미세먼지 연구센터 충청권대기환경연구소
- 데이터 기반 충남지역 대기질 특성 분석 (AQMS, 마을대기측정망, 대기환경연구소)
- 필터기반 집중측정 (당진, 아산시) / 현장 이동관측 지원
- 집중측정 및 측정소 데이터 연계 PM_{2.5}의 물리화학적 특성 분석 / 정책제언

충남연구원
4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

충남지역 유관기관 설명회: '23.04.03~04

참석기관: KIST, 충남연구원, 충청권 대기환경연구소, 충남보건환경연구원, 중부권 미세먼지연구관리센터, 아산시청

당진 고정측정 지점: 당진 송산면 대기 측정소

당진 이동측정: 현대제철 주변

4. 중부권 초미세먼지의 물리화학적 특성 및 지역 발생원인 조사

세종시 유관기관 설명회: '23.04.12

참석기관: 사업단, KIST, KEI, 충남연구원, 세종시 보건환경연구원, 대전·세종연구원, 세종시청

Chungnam Institute

중부권 미세먼지 관리를 위한 연구 교류 세미나

충청남도 마을대기측정망 소개자료

2023 5. 11.

박세찬, 송한결, 이가혜, 최영남, 이상신, 김종범

충남연구원 서해안기후환경연구소

CONTENTS

1. 마을대기측정망 설치 배경

2. 충청남도 대기질 측정 현황

3. 발전소 주변지역 대기질 관리 현황

4. 마을대기측정망 운영 현황

1. 마을대기측정망 설치 배경

복합적인 환경문제 발생

중청남도의 지역·환경적 여건 : 편서풍 지대에 위치하여 중국의 영향, 쉴 틈 없는 오염벨트 지역

지리적 여건 : 중국발 미세먼지는 대륙고기압 중심이 남쪽으로 이동하거나 북서풍이 강할 때 국내 유입됨
환경적 여건 : 석탄화력발전소(당진, 보령, 태안, 서천), 대산 석유화학단지, 현대제철소 등 다수의 대형배출시설 위치

💫 주민 건강 보호와 대기환경 개선을 위한 대기 관리 대책 마련이 시급

충남연구원 ChungNam Institute

× 3

□ 화력발전소의 석탄사용량은 2017년 이후 꾸준한 증가 추세(충남연구원, 2020)

□ 충청남도의 인구는 꾸준히 증가 추세에 있으며 이에 따라 과학기술 기반의 강화된 정책, 관리방안이 요구되는 실정

□ 지역 인구수는 고정배출원 또는 이동배출원의 증감과 상호 밀접한 관련성이 있음

대기오염배출물질 농도추이 파악 필요

1. 마을대기측정망 설치 배경

충남연구원

<u>الله</u>

2. 충청남도 대기질 측정현황

┃ 충청남도 대기오염측정망(국가)

2022.06. 기준

□ 충청남도 국가대기 측정망 현황 : 도시대기측정소(AQMS) 38개소, 도로변측정소(RAQMS) 2개소
□ 지역별 측정소 개수 : 아산(7) > 천안(5) > 서산(4) > 논산,태안, 서천(3) > 당진, 보령(2) / 충남 도민 57,216명당 1개 AQMS

국가대기측정망(충청남도 보건환경연구원 관리)

☑한계점 1

도시대기 측정을 목적으로 하기 때문에 주거지역 위주로 배치되어 있어 발전소 주변 지역 대기질 판단에 무리가 있음

한계점 2

측정소 위치를 화력발전소 기준으로 계산하면 태안화력을

제외한 모든 측정소가 10 km 이상 떨어짐

⊻한계점 3

충남지역에 화력발전소가 위치하는 시군별 대기측정소는 태안군 및 서천군 3개소 당진시 및 보령시 2개소가 전부인 실정

6/14

충남연구원 ChungNam Institute

민간대기 측정망(발전3사 관리)

. ١

3

충청남도 민간대기 측정망 현황 : 보령 12개소, 당진 11개소, 태안 10개소, 서천 5개소

┃ 충청남도 대기오염 측정망(민간)

□ 발전사별로 정보를 별도로 제공하며 뚜렷한 지침이 없어 도민들의 정보 취득에 불편

3. 발전소 주변지역 대기질 관리 현황

3. 발전소 주변지역 대기질 관리 현황 💥 😋 🖸

마을대기측정망 측정소 위치 정보

- □ 당진화발발전(한국동서발전) 기준 20 km 내 12개 측정소 위치 (대난지도 측정소는 배경농도로 활용)
- □ 태안화력발전(한국서부발전) 기준 19 km 내 10개 측정소 위치

중남연구 ChungNam Instit

3. 발전소 주변지역 대기질 관리 현황 💥 😋 🖸

마을대기측정망 측정소 위치 정보

□ 보령화발발전(한국중부발전) 기준 20 km 내 13개 측정소 위치 (청라면 측정소는 배경농도로 활용)

□ 태안화력발전(한국중부발전) 기준 3 km 내 5개 측정소 위치

중남연-ChungNam Ins

마을대기측정망 통합정보센터 역할

ϔ 설립목적

충청남도 내 마을대기측정망의 통합운영 관리로 도내 대기질측정체 계의 신뢰를 향상하고, 도민 대기질 정보서비스 질적 향상과 대기질 정책의 과학적근거 제공

🗑 22년도 추진전략

- 1. 전 측정소 등가성평가수행
- 2. 유효가동률 75% 이상 달성
- 3. 발전소 인근 주민들에게 정보제공

산후 마을대기측정소

< 마을대기측정망 측정소 예시 >

구분	시·군	측정소명	주 소		
		교성/교성1리 마을회관	충남보령시오천면김신길31		
		남포/삼현1리노인회관	충남보령시 남포면 봉덕삼현길 590(삼현1리)		
		송학/송학초등학교	충남보령시주교면토정로 796-52		
		신흑/오천면사무소 어항출장소	충남보령시 대천항중앙길 46		
	보령시 (11곳)	오천/오천초등학교	충남보령시오천면충청수영로 822		
		오포/발전소 남부회처리장	충남보령시오천면오천해안로 89-37		
		원산/원산마을회관	충남보령시오천면원산도1길14		
		주포/주포면사무소	충남보령시주포면보령읍성길 38-1		
		죽정/한전사옥	충남 보령시 봉황로69 한전사택내 201동		
		천복 / 천북 초등학교	충남 보령시 천북면 하궁길 45		
		<u>학성</u> /바닷횟집인근	충남 보령시 천북면 학성염전길 94-26		
	당진시 (11곳)	교로/당진 화력본부	충남당진시면천면면천로623(성상리945)		
		금천/신평면사무소	충남당진시신평면신평로 834(금천리 458)		
		<mark>사관</mark> / 신당진 변전소	충남 당진시 정미면 정미로316(사관리 231-2)		
		삼봉/석문 중학교	충남 당진시 석문면 대호로 1533-6(삼봉리 892)		
		성상/면천면사무소	충남당진시면천면면천로 623(성상리 945)		
		용두/고대면사무소	충남당진시고대면구장터길9(용두리664-1)		
		운산 /합덕읍사무소	충남 당진시 합덕읍 예덕로 403(운산리 675-172)		
마을대기		원당/당진에코파워	충남 당진시 석문면 대호만로 2222-17(교로리 2893)		
측정망		<mark>적서</mark> / 적서리 마을회관	충남 당진시 대호지면 대호로 662(적서리 156-9)		
		중흥/송악초등학교	충남 당진시 송악읍 송악로663-1(중흥리 257)		
		통정/석문면사무소	충남 당진시 석문면 통정 3길2-1(통정리 393-1)		
	서천군 (5곳)	내도둔 / 내도둔 마을희관	충남서천군서면서인로317번길21(마량리74-1)		
		마량/마량초소	충남서천군서면 마량리 151-2		
		요포/요포 마을회관	충남서천군서면서인로415번길36(도둔리716)		
		춘장대 / 춘장대 사택	충남서천군서면 춘장대로 130(도둔리 1-4)		
		흥원/흥원마을회관이전부지	충남서천군서면도둔리 957-7		
		고남/고남면사무소	충남태안군고남면안면대로 4254-12		
		관리 / 이원초등학교 관동분교	충남태안군이원면관리 572-1		
		내리 / 이원초등학교 내리분교	충남태안군이원면원이로2431		
		대기/대기초등학교	충남태안군원북면대기길 12-21		
	태안군	반계/원북초등학교	충남태안군원북면원이로849-3		
	(11곳)	방갈/방갈2리 마을회관	충남태안군원북면 학암포길 29		
		산후/산후1리 다목적회관	충남태안군태안읍밤나무길390		
		안기/안기2리 마을회관	중남태안군근흥면명장길6-4		
		의항/의항리보건지료소	중남태안군소원면개목길25-9		
		이곡 / 이곡1리 다목적회관	중남태안군원북면이곡1길14		
		평전 / 평전3리 다목적회관	중남태안군태안읍평전길77		
고정대기	당진시	석문(대난지도)	중남당신시 식분면교로리 난지도리 177-62, 당진시청소년수련원		
즉성방	보령시	청라(청라면)	충남보령시청라면나원리749		

□ 유효가동률 향상 및 데이터 신뢰도 향상을 위해 다양한 노력

10/14

충남연구원 ChungNam Institute

¢ دې ژ

- □ 주1회 점검(span 교정, 필터교체 등)
- □ 정도검사 일정관리
- □ 관제시스템 상시모니터링
- □ 측정소별 월 2회 현장점검
- □ 월별 데이터 확정 및 월보, 연보 작성

┃ 마을대기측정망 운영결과(Ⅰ)

ϔ 전체 측정소의 평균 유효가동률

□ 대기오염측정망 설치운영관리지지침(2021)에 따라 유효가동률 산정

충남연구원

. ١

C

┃ 마을대기측정망 운영결과(Ⅱ)

🖞 지역별 유효가동률 비교

3/14

■6월후

이곡

평천

마을대기측정망 통합정보센터 데이터 처리현황

□ 데이터의 유효성을 판별하기 위하여 이상데이터(이상치) 분류 작업이 수행

□ 국가대기측정망과 동일한 절차로 구성하기 어려워 '데이터검토위원회'를 통해 데이터의 2차 확정 진행

충남연구원

 ۲۵ ان ۲۵ ان

마을대기측정망 이상데이터 판별(엑셀 內)

□ 대기오염물질 및 기상자료 12개 항목에 대하여 이상데이터 판별, 수기로 진행 中

□ 데이터는 관제시스템에서 다운로드 후 엑셀시트에서 이상치 판별작업 수행(자동화시스템 개발 中)

중남

ChungNam Institute

» ۳۵ °C

□ 측정기기 운영기술 고도화 및 정도검사 수행을 통한 유효가동률 개선

□ 데이터 검토위원회를 통한 데이터확정 및 확정자료 제공

□ 마을대기측정망 데이터 홍보를 통한 충청남도 대기질 개선 관련 연구 독려

□ 충청남도 마을대기측정망 연간보고서 및 월간보고서 배포

□ 발전소 주변지역 주민설명회 개최를 통한 지역주민과의 소통 활성화

□ 측정소가 없는 지역의 대기오염물질 농도 예측 및 예보시스템 검토

□ 발전소 주변지역 대기오염물질 정보제공 시스템에 마을대기측정망 데이터 활용 독려

감사합니다

Chungnam Institute

중부권 고농도 PM_{2.5} 기상/기후 영향분석

2023.05.11 상 정 현지민

○ 고농도 초미세먼지(PM_{2.5}) 발생 주요 요인

○ 자료

•				
출처	변수	분석 기간	시간 해상도	
Air Korea	PM _{2.5}		Daily 중부권 36개 관측소 (황사 발생일은 제거함)	
	Geopotential height (GPH)	2018년 2022년		
ECMWF	Sea level pressure (SLP)	2018년~2022년 1월~2월 (JF)	Daily	
ERA5	U,V wind		1°× 1°	
	Air Temperature			
	Boundary Layer Height (BLH)			

- Airkorea 에서 제공하는 시간 별 PM_{2.5} 농도의 일평균 자료(황사일 제거)
- 2018년부터 2022년까지 이동 없이 유지된 PM_{2.5} 관측소 자료 선별하여 사용
- 유효관측자료가 매년마다 80%이상 확보된 관측소 선별
- 분석 기간 : 2018년부터 2022년 1월부터 2월

○ 연구방법

- 한반도 PM2.5 농도의 시·공간 분포 특성을 확인하기 위해 통계적 기법 사용
- EOF (empirical orthogonal function)
- 각 사례 및 군집 별 대기순환 패턴의 특징 파악을 위해 합성장 편차 분석 수행

◆ 2016년부터 2021년까지 유지된 한반도 관측소 : 총 208개

분석 기간: 2016년 ~ 2021년 1-2월

✤ 2018년부터 2022년까지 유지된 한반도 관측소 : 총 241개

• 분석 기간: 2018년 ~ 2022년 1-2월

◆ 2018년부터 2022년까지 유지된 중부권 관측소 : 총 42개

• 분석 기간: 2018년 ~ 2022년 1-2월

-				-			
1	533112	청주	송정동	27	735111	전주	삼천동
2	533113	청주	사천동	28	735114	전주	팔복동
3	533115	청주	용암동	29	735121	군산	신풍동
4	633122	충주	호암동	30	735122	군산	소룡동
5	633123	충주	칠금동	31	735133	익산	팔봉동
6	633131	제천	장락동	32	735134	익산	모현동
7	633311	단양	매포읍	33	525111	대전	읍내동
8*	633411	진천	진천읍	34	525112	대전	문평동
9	534111	천안	성황동	35	525121	대전	문창동
10	534112	천안	백석동	36	525141	대전	구성동
11*	534115	천안	성거읍	37	525142	대전	노은동
12*	534434	당진	당진시청사	38	525161	대전	성남동
13*	534433	당진	송산면	39	525171	대전	정림동
14*	534421	서산	독곶리	40	525172	대전	둔산동
15	534422	서산	동문동	41*	541111	세종	신흥동
16	534441	아산	모종동	42*	541112	세종	아름동
17*	534442	아산	배방읍				
18*	534451	논산	논산				
19*	534462	태안	이원면				
20*	534463	태안	태안읍				
21*	534481	보령	대천2동				충북
22*	534491	홍성	홍성읍				축난
23*	534342	공주	공주				거비
24*	534411	부여	부여읍				신국
25*	534502	청양	청양읍				대전
26*	534501	금산	금산읍				세종

✤ 2016년부터 2021년까지 유지된 중부권 관측소 : 총 27개

• 분석 기간: 2016년 ~ 2021년 1-2월

- 평균: 31.15 μg/m³
- 지점별 Min : 24.01 (525171 : 대전) Max : 39.22 (533113 : 충북 청주)

표준편차: 17.46 µg/m³

지점별 Min : 12.32 (525161: 대전) Max : 21.45 (534441: 충남 아산)

- ✤ 2018년부터 2022년까지 유지된 중부권 관측소 : 총 42개
 - 분석 기간: 2018년 ~ 2022년 1-2월

- 평균: 30.35 μg/m³
- 지점별 Min : 23.03 (534462: 충남 태안) Max : 39.62 (534115: 충남 천안)
- 표준편차: 17.59 μg/m³
- 지점별 Min : 12.99 (525161: 대전) Max : 22.30 (534115: 충남 아산)

◆ 2018년부터 2022년까지 유지된 관측소 : 총 36개

K-means Clustering : EH start day

◆고농도 PM_{2.5}와 관련된 대기순환

✓ EH start day

한반도: 33N-38N 125E-130E

[EH case] Standardize atmospheric variables

분석 기간: 2018년 ~ 2022년 1-2월

아례1(2018.01.15~2018.01.21)

15

아례1(2018.01.15~2018.01.21)

400 39.5% 39% 38.5% 38% 37.5%

연구결과 – 고농도 PM_{2.5} 시공간적 특성 분석

○ 사례2(2019.02.19~2018.02.28)

연구결과 – 고농도 PM_{2.5} 시공간적 특성 분석

○ 사례2(2019.02.19~2019.02.28)

39.5% 39% 38.5% 38% 37.5% 37%

• 중부권 PM_{2.5} 농도에 대한 군집분석(K-mean)을 통해 사례 분석 수행 예정

• 본 연구는, 최근 5년 (2018~2022년) 간 겨울철 (1~2월)

중부권 PM_{2.5} 농도의 변동 특성과 이와 관련된 대기 순환 패턴을 분석함

- 중부권에서 EH 사례는 약 <u>5.8 day/year</u>, H 사례는 약 <u>23 day/year</u>로 나타남
- 중부권의 EH 사례에 대해 K-mean 군집 분류 결과,
 - 1st cluster: 북대서양-북유럽 대기 변동성과 관련된 대기 순환 패턴
 - : Eastern Atlantic and northern Europe (ENE) 지역에서 급격히 발달하는 고기압성 편차와 관련되어 있음 (Kim et al., 2021)
 - 2nd cluster: 북극/고위도의 대기 변동성과 관련된 대기 순환 패턴

: Barents-Kara sea 해빙 농도의 감소와 관련되어 있음 (Kim et al., 2019)

• 중부권 PM_{2.5} 농도의 EOF 1st mode는 대규모 변동 모드로 나타남

2nd mode는 동서 변동 모드로 나타나며, 3개 그룹으로 구분됨

- 사례1(2018.01.15~2018.01.21) : 국외 유입(G1 고농도) → 풍하측 바람약화(G2,G3 고농도)
- 사례2(2019.02.19~2018.02.28) : 하층바람 약화(G2, G3 고농도)

감사합니다.

<중부권 미세먼지 연구관리센터 연구 교류 세미나> 장소: 충남연구원 서해안기후환경연구소 일시: 2023.5.11 (목) 10:00~12:00

WRF-Chem 모형을 이용한 동아시아 기상-대기질 예측 체계 개발

이재형, 이상현*

중부권 미세먼지연구관리센터 연구 2팀

충청권역 상세 기상·대기질 융합 모델링 체계 구성

[2]

충청권역 상세 기상·대기질 융합 모델링 체계 구성

[3]

	Horizontal grid (ΔX)					ㅁ데리 시스테/기사자\
D01	D02	D03	D04	D05	vertical layer	포달경 시끄럼(기영경)
180×133 (32.4 km)	189×180 (10.8 km)	180×189 (3.6 km)	225×222 (1.2 km)	201×165 (0.4 km)	55	WRF-Chem (FNL/GFS)
175×127 (27 km)	97×136 (9 km)	196×214 (3 km)	-	-	28	WRF-Chem (UM)
174×128 (27 km)	99×138 (9 km)	198×216 (3 km)	-	-	28	WRF/CMAQ (WRF)
174×128 (27 km)	67×82 (9 km)	74×110 (3 km)	164×164 (1 km)	-	15	WRF/CMAQ (UM/GFS)
	D01 180×133 (32.4 km) 175×127 (27 km) 174×128 (27 km) 174×128 (27 km)	D01 D02 180×133 (32.4 km) 189×180 (10.8 km) 175×127 (27 km) 97×136 (9 km) 174×128 (27 km) 99×138 (9 km) 174×128 (27 km) 67×82 (9 km)	Horizontal grid (ΔX)D01D02D03180×133 (32.4 km)189×180 (10.8 km)180×189 (3.6 km)175×127 (27 km)97×136 (9 km)196×214 (3 km)174×128 (27 km)99×138 (9 km)198×216 (3 km)174×128 (27 km)67×82 (9 km)74×110 (3 km)	Horizontal grid (ΔX)D01D02D03D04180×133 (32.4 km)189×180 (10.8 km)180×189 (3.6 km)225×222 (1.2 km)175×127 (27 km)97×136 (9 km)196×214 (3 km)-174×128 (27 km)99×138 (9 km)198×216 (3 km)-174×128 (27 km)67×82 (9 km)74×110 (3 km)164×164 (1 km)	Horizontal grid (ΔX)D01D02D03D04D05180×133 (32.4 km)189×180 (10.8 km)180×189 (3.6 km)225×222 (1.2 km)201×165 (0.4 km)175×127 (27 km)97×136 (9 km)196×214 (3 km)174×128 (27 km)99×138 (9 km)198×216 (3 km)174×128 (27 km)67×82 (9 km)74×110 (3 km)164×164 (1 km)-	Horizontal grid (ΔX)Vertical layerD01D02D03D04D05180×133 (32.4 km)189×180 (10.8 km)180×189 (3.6 km)225×222 (1.2 km)201×165 (0.4 km)55175×127 (27 km)97×136 (9 km)196×214 (3 km)28174×128 (27 km)99×138 (9 km)198×216 (3 km)-28174×128 (27 km)67×82 (9 km)74×110 (3 km)164×164 (1 km)-15

동아시아 지역의 황사 발원지 및 수송 경로

■ 동아시아 지역은 전 지구 지역에 분포하는 주요 자연 먼지 발생 지역 중 하나임 (Zhang et al., 1997; Ginoux et al., 2001, 2004;

Sun et al., 2001; Tanaka and Chiba, 2006; Kok et al., 2021)

Solution Asian dust or yellow sand ('Hwangsa') (Chun et al., 2001, 2008; In and Park, 2002; Park and Lee, 2004)

▶ 전지구 먼지 배출량의 약 10-40% 발생 (Ginoux et al., 2001; Huang et al., 2014; Hu et al., 2019; Kok et al., 2021)

주로 고비/내몽골 사막에서 발해만을 지나 한반도로 수송됨 (약 50% 이상)
 ▶ 중국 북동부 지역: 14-19%

한반도 지역에서 관측된 황사 일수

- 황사는 봄철에 빈번하게(약 70-80%) 관측되고 있으나, 겨울철 황사도 두번째로 높은 빈도를(약 10-25%) 차지함 (Kim, 2008; Kim et al., 2008; NIMS, 2015)
- 겨울철 황사는 적설, 토양 수분, 토양 결빙과 같이 봄철과 다른 지면 조건의 영향을 받음(Kurosaki and Mikami, 2004; Larent et al., 2006)
- 겨울철 황사에 대한 WRF-Chem 모형의 성능을 조사하고 먼지 배출 방안을 평가함

겨울철 강한 황사 사례 선정 2015년 2월 22일-24일

Surface weather charts during the Asian dust event period of 20–22 February 2015

[6]

Lee and Lee (2022)

겨울철 강한 황사 사례 한반도 주요 지점에서 측정된 PM10 농도

[7]

<PM10 concentration measured by KMA's TEOM instrument in South Korea>

- PM10 최대농도는 1044 μg m⁻³로 측정되었으며, 이는 서울 기상청에서 두번째로 높은 기록이었음 (NIMS, 2015)
- 약 4년 만에 황사 주의보가 발령되었고, 35시간동안 발효되었음

자료 및 방법

실험 설계

WRF-Chem dust emission schemes (Lee and Lee, 2022)

		•	. ,
experiment name	dust scheme	model option	reference
UC01	UC	dust_opt = 4, dust scheme= 1	Shao (2001)
UC04	UC	$dust_opt = 4,$ dust scheme = 2	Shao (2004)
UC11	UC	$dust_opt = 4,$ $dust_scheme = 3$	Shao et al. (2011)
GO01	GOCART	$dust_opt = 1$	Ginoux et al. (2001)
GA19	AFWA	$dust_opt = 3$	LeGrand et al. (2019)

<WRF-Chem version 3.9.1>

[8]

- 고비 사막과 내몽골 사막을 포함한 동아시아 먼지 발생 지역 포함
- 기상장의 종관 변화를 명시적으로 나타낼 만큼 충분히 확장 (Lee et al., 2011; Lee et al., 2015; Oh et al., 2020)
- 수평 격자 해상도 (연직 층): 32.4 km (55)
- **기상 초기/경계 조건**: NCEP-FNL (w/ 4DDA)
- 화학 메커니즘: RACM (gas)/GOCART (aerosol)
- **인위적 배출량**: MICS-Asia 2010
- 분석 기간: 2015.02.20-02.24 (4 days)
- WRF-Chem 모형의 다른 먼지 배출 방안을 통해 5개 시뮬레이션 수행
- 모든 물리/화학적 옵션은 먼지 배출 방안을 제외하면 5개 실험에서 동일

자료 및 방법

먼지 배출 방안

- WRF-Chem 모형에서 구현된 5가지 먼지 배출 방안
 - ✓ UC01: 도약 충격(Saltation bombardment) 및 응집 분해 (aggregate disintegration) 메커니즘 (Shao, 2001) ~
 - ✓ UC04: 도약 충격 효율성의 단순화 (Shao, 2004)
 - ✓ UC11: 토양 입자 크기 분포의 단순화 (Shao et al., 2011)
- 10-m 풍속 ✓ GO01: 지표 풍속과 먼지 배출 사이 관계를 사용하는 간단한 방안 (Ginoux et al., 2001) → empirical based
 - ✓ GA19: GO01 방안에 기반한 물리적 접근 (도약 충격) 방식 (LeGrand et al., 2019) → semi-empirical based

<UC01>

$$F(d_{i}, d_{s}) = c_{y} \left[(1 - \gamma) + \gamma \sigma_{p} \right] \frac{Q(d_{s})g}{mu_{*}^{2}} \left(\underline{\rho_{b} \eta_{f,i} \Omega} + \underline{m \eta_{c,i}} \right)$$

 $\label{eq:solution} \begin{array}{c} \text{Saltation bombardment} & \text{Aggregation disintegration} \\ F(d_i,d_s): the dust emission rate for particles of size d_i produced by the saltation of particles of size d_s (kg m^{-2} s^{-1}) \end{array}$

<UC04>

$$F(d_i, d_s) = c_y \eta_{f,i} \left[(1 - \gamma) + \gamma \sigma_p \right] \frac{Q(d_s)g}{u_*^2} (1 + \sigma_m)$$

 $F(d_i,d_s)$: the dust emission rate for particles of size d_i produced by the saltation of particles of size d_s (kg m^{-2} s^{-1})

<UC11>

"Source regions: refer to binary"

 $F(d_i) = c_y \eta_{m,i} \frac{Q_{total}g}{u_*^2} (1 + \sigma_m)$

 $F(d_i)$: the dust emission rate for particles of size d_i produced by the total saltation (kg $m^{-2}\ s^{-1})$

<G001>

$$F_{p} = \begin{cases} GS_{p}u_{10m}^{2}(u_{10m} - u_{*,t}(D_{p}, \theta_{s})), u_{10m} > u_{*,t}(D_{p}, \theta_{s})\\ 0, & u_{10m} \le u_{*,t}(D_{p}, \theta_{s}) \end{cases}$$

- F_p : Emission flux for each size bin (kg m⁻²s⁻¹)
- C: Dimensional proportionality constant (= $0.8 \times 10^{-9} \text{ kg m}^{-2} \text{ s}^{-5}$) u_{10m}: 10 m wind speed (m s⁻¹)
- $u_t(D_p, \theta_s)$: Threshold friction velocity (m s^{-1})
- S: Dust source strength (unitless) S_p : Mass fraction from soil (unitless)

<GA19>

$$F_{d,p} = F_B \kappa_{d,p} \quad F_B = \begin{cases} GS\beta, & z_0 \le 20cm \\ 0, & z_0 > 20cm \end{cases}$$

- $F_{d,p}$: Size resolved dust emission fluxes (g m⁻²s⁻¹)
- F_B : The bulk dust emission flux (kg m⁻²s⁻¹)
- $\kappa_{d,p}$: Suspended dust distribution weighting factors (Kok, 2011)

Dust source regions

$$S = \left(\frac{Z_{max} - Z_i}{Z_{max} - Z_{min}}\right)^5$$

physical based

S: Dust source strength function (EROD) Z_i : Elevation of the cell Z_{max} : Maximum elevation (10° × 10° area) Z_{min} : Minimum elevation(10° × 10° area) 자료 및 방법

검증 자료

	type	parameter	temporal resolution	source
meteorology	surface	2-m temperature 2-m specific humidity 10-m wind speed precipitation	3 h	NCDC ISD ^a
	satellite	precipitation	daily	TRMM ^b
air quality	surface	PM ₁₀	1 h	air quality monitoring site (South Korea)
		PM ₁₀ ^c	1 h	dust monitoring site (China)
	satellite	aerosol optical depth (AOD) extinction coefficient	day/night	CALIOP ^d / CALIPSO ^e

Measurement dataset used for meteorology and air quality evaluations (Lee and Lee, 2022)

• $AOD_{WRF-Chem} = \sum_{k=1}^{n} e(k) \Delta z$

e₅₅₀: the extinction coefficient at 550 nm
k: the vertical layer index of the model
Δz: the thickness of the vertical layer of the model

1) 지표 측정

- NOAA/NCDC ISD
 - ✓ 10-m 풍속, 2-m 온도/습도 (3시간 간격)
 - ✓ 1044 지점 (동아시아 지역)

PM10

- ✓ 황사 발원 지역: 하미, 쥬리허, 에렌하오터, 츠펑, 통랴오 (Park et al., 2016)
- ✓ 한반도: 백령도, 서울, 군산, 대관령, 고산

2) 위성

- TRMM (TRMM_3B42_Daily v7, Level 3)
 ✓ 일 강수량 (0.25°×0.25°)
- MODIS (MYD04_L2, collection 61 level 2 deep blue algorithm)

✓ 일별 AOD (10×10 km²)

CALIOP/CALIPSO (CAL_LID_L2_05kmAPro-Standard-V4-20)
 ✓ 에어로졸 소산 계수

모의 기상장 검증

[11]

모의된 먼지 농도의 수평 및 연직 분포

low dust

WRF-Chem 먼지 방안의 성능 비교

- UC11: UC01 및 UC04 방안과 비교하여 먼지 농도 및 배출 플럭스 크기 낮음
- GO01: 중국 북서부 및 북부지역에서 높은 수준의 먼지 플룸
- GA19: 상대적으로 낮은 먼지 농도 및 배출 플럭스 (GO01 방안과 유사함)
- 전체적으로 먼지 배출 플럭스의 강도 및 먼지 농도에 따라 크기 두 그룹으로 구분되는 특징

WRF-Chem 먼지 방안의 성능 비교

[2015.02.20 00 UTC ~ 02.24 00 UTC]

- 먼지 방안들은 먼지 배출량에서 뚜렷한 차이를 보임 (두 그룹)
- UC01, UC04: 모든 입자 크기 bin (특히, > 6 µm) 다른 먼지 방안보다 더 높은 먼지 배출량 발생
 ▷ UC11: 토양 입자 크기 분포 표현의 변화에 기인 (Shao et al., 2011)

[14]

결과

지표 측정에 대한 WRF-Chem 먼지 방안의 평가

[15]

- UC01, UC04: 측정된 높은 먼지 농도를 모의하였음
- UC11, GO01, GA19: 측정된 높은 먼지 농도를 모의하는데 실패하였음
 ✓ UC11: 먼지 배출 플럭스 발생에 최소 교란 입자 분포 (minimally disturbed particle distribution)만 사용
 ✓ GO01, GA19: 토양 포화도 임계값 초과 및 먼지 소스 강도의 낮은 값에 기인

지표 측정에 대한 WRF-Chem 먼지 방안의 평가

<Comparison of the dust emission fluxes and dust emission ratios of the saltation bombardment and aggregates disintegration processes of the UC schemes>

<Comparison of the total saltation bombardment of the UC and GA19 schemes>

- UC01, UC04, UC11: 도약 충격 과정은 응집체 분해 과정보다 더 많은 먼지 배출 플럭스에 기여하였음
 - ✓ UC01과 UC04 방안간 차이는 UC04 방안에서 약 20% 더 높은 도약 충격 플 럭스에 기인
- GA19 방안의 총 도약 플럭스는 UC 방안과 비교하여 약 10% 미만 수 준이었음 (쥬리허, 에렌하오터)

결과

지표 측정에 대한 WRF-Chem 먼지 방안의 평가

[17]

결과

[18]

지표 측정에 대한 WRF-Chem 먼지 방안의 평가

- UC01, UC04: 황사의 유입 및 지속 시간을 포착했으나, 모의된 최대 먼지 농도의 크기와 시간에 편향을 보임
- UC11, GO01, GA19: 중국 황사 발원지역의 먼지 배출량 추정 성능이 좋지 않아 한반도 지역에서 관측된 황사를 모의하지 못함

동적 강제력과 토양 수분에 대한 먼지 방안의 민감도

- 재분석 토양 수분과 10-m 풍속을 기반으로 먼지 배출 방안의 민감도 테스트 수행
- 먼지 배출 방안은 지표 풍속과 토양 수분에 상당한 민감성을 보임
- 증가된 마찰속도는 먼지 배출 플럭스를 약 119%~828% 증가시켰음 UC01 UC04
- 낮은 토양 수분은 먼지 배출 플럭스를 83%~763% 증가시켰음
- 마찰속도와 토양 수분의 결합 효과: 3000%, 3109%, 570%, and 302% _____ GA19

동적 강제력과 토양 수분에 대한 먼지 방안의 민감도

Jurihe

요약 및 결론

- 2015년 2월 관측된 강한 황사 사례를 모의하는 WRF-Chem 모형의 성능을 조사하였음
- 겨울철 강한 황사 사례에 대한 5가지 먼지 배출 방안의 성능 차이를 확인함

- UC01, UC04: 겨울철 먼지 발생 지역에서 수천 µg m⁻³ 의 높은 먼지 농도를 모의하였음
- UC11, GO01, GA19: 겨울철 강한 먼지 플룸을 모의하는데 뚜렷한 한계를 보임

- UC01, UC04: 높은 먼지 배출 플럭스를 생성하지만 기상장에 대한 민감도가 높음
- UC11: 먼지 배출 플럭스는 토양 입자 크기 분포 모수화 변화로 인해 토양 구성 (특히 양토, 점토질 양토)에 민감함

[21]

- GO01: 본질적으로 먼지 배출 플럭스 발생에 제약
- GA19: GO01 보다 높은 먼지 배출 플럭스가 발생하지만 먼지 소스 강도 항(erodibility factor)에 의존

WRF-Chem 모형의 겨울철 황사 모델링: 한계점

(1) 모형에서 정의된 먼지 발생 지역

Wang et al. (2021)

- WRF-Chem 모형에서 정의된 먼지 발생 지역은 동아시아 지역의 실제 먼지 발생 지역과 차이가 있음
- 만주 평원 지역(커얼친 사막 부근)에서 발생하는 먼지 플 룸은 한반도에 상당한 영향을 미칠 수 있음 (Chun et al., 2003; Kim et al., 2010; Park et al., 2011; Park et al., 2016)
- 동아시아 지역의 먼지 발생 지역에 대한 보다 현실적인 표 현을 제안함

Kim et al. (2010)

Chun et al. (2003)

[22]

WRF-Chem 모형의 겨울철 황사 모델링: 한계점

[23]

WRF-Chem 모형의 겨울철 황사 모델링: 한계점

[24]

- 동결된 토양 조건은 동아시아 먼지 발생 지역의 먼지 배출 플럭스를 크게 억제할 수 있음 (Han et al., 2011; Wang et al., 2014)
- 몽골 동부 지역에서 먼지 플룸이 발생하려면 약 57% 더 강한 풍속이 필요함 (Han et al., 2011)
- WRF-Chem 모형에서 구현된 모든 먼지 배출 방안은 겨울철 동결 토양 조건을 고려하기 위한 모수화를 포함하고 있지 않음

Thank you for your attention!

In the Gobi desert

Lee, J.-H., and Lee, S.-H., 2022. Modeling a severe wintertime Asian dust event observed in the East Asia region: Sensitivity of the WRF-Chem dust emission schemes. Atmos. Pollut. Res., 13, 101599.

25